DOI QR코드

DOI QR Code

Effect of MMT on Anti-Water Absorption of Polyamide/MMT Nanocomposites

MMT 첨가에 따른 Polyamide/MMT 나노복합체의 흡습 특성

  • Park, Sang-Cheol (Department of Polymer Science, Kyungpook National University) ;
  • Kim, Ho-Gyum (Department of Polymer Science, Kyungpook National University) ;
  • Min, Kyung-Eun (Department of Polymer Science, Kyungpook National University)
  • 박상철 (경북대학교 고분자공학과) ;
  • 김호겸 (경북대학교 고분자공학과) ;
  • 민경은 (경북대학교 고분자공학과)
  • Received : 2012.09.14
  • Accepted : 2012.10.22
  • Published : 2013.01.25

Abstract

The melt intercalation to commercialize nanocomposites in a pilot scale was applied and the water absorption characteristics for polyamide/MMT nanocomposites manufactured by twin screw extruder was studied. As a result, water absorption decreased with the introduction of MMT and dimensional stability was improved. However, as water absorption increased, flexural strength and modulus were reduced. Therefore, the effect of MMT introduction on mechanical properties of nanocomposites was clearly observed, which may increase the level of strength by maintaining anti-water absorption property of nanocomposite.

Pilot scale에서의 나노복합체의 상용화를 위해 용융 삽입법을 적용하고 이축 압출기로 제조한 polyamide/MMT 나노복합체의 흡습 특성을 연구한 결과, MMT 도입으로 수분 흡수율이 감소되었으며 그에 따라 치수 안정성이 향상되었다. 굴곡강도 및 탄성률은 수분 흡수율이 증가함에 따라 저하되었으며, 이로부터 MMT의 도입은 강도 향상효과와 함께 흡습방지를 통한 강도 저하 억제효과도 보이는 것으로 조사되었다.

Keywords

References

  1. O. Monticelli, Z. Musina, F. Ghigliotti, S. Russo, and V. Causin, e-Polymers, No.124 (2007).
  2. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 179 (1993).
  3. S. H. Wu, F. Y. Wang, C.-C. M. Ma, W. C. Chang, C.-T. Kuo, H.- C. Kuan, and W.-J. Chen, Mater. Lett., 49, 327 (2001). https://doi.org/10.1016/S0167-577X(00)00394-3
  4. P. Uribe-Arocha, C. Mehler, J. E. Puskas, and V. Altstadt, Polymer, 44, 2441 (2003). https://doi.org/10.1016/S0032-3861(03)00115-0
  5. T. Kashiwagi, R. H. Harris, Jr., X. Zhang, R. M. Briber, B. H. Cipriano, S. R. Raghavan, W. H. Awad, and J. R. Shields, Polymer, 45, 881 (2004). https://doi.org/10.1016/j.polymer.2003.11.036
  6. B. Mu, Q. Wang, T. Wang, H. Wang, and L. Jian, Polym. Eng. Sci., 48, 203 (2008). https://doi.org/10.1002/pen.20956
  7. X. Liu and Q. Wu, Macromol. Mater. Eng., 287, 180 (2002). https://doi.org/10.1002/1439-2054(20020301)287:3<180::AID-MAME180>3.0.CO;2-T
  8. F. Chavarria, and D. R. Paul, Polymer, 45, 8501 (2004). https://doi.org/10.1016/j.polymer.2004.09.074
  9. X. H. Liu and Q. J. Wu, Macromol. Mater. Eng., 287, 180 (2002). https://doi.org/10.1002/1439-2054(20020301)287:3<180::AID-MAME180>3.0.CO;2-T
  10. M. Mehrabzadeh and M. R. Kamal, Polym. Eng. Sci., 44, 1152 (2004). https://doi.org/10.1002/pen.20108
  11. B. Han, G. D. Ji, S. S. Wu, and J. Shen, Eur. Polym. J., 39, 1641 (2003). https://doi.org/10.1016/S0014-3057(03)00075-2
  12. L. Shen, I. Y. Phang, L. Chen, T. X. Liu, and K. Y. Zeng, Polymer, 45, 3341 (2004). https://doi.org/10.1016/j.polymer.2004.03.036
  13. D. P. N. Vlasveld, S. G. Vaidya, H. E. N. Bersee, and S. J. Picken, Polymer, 46, 3452 (2005). https://doi.org/10.1016/j.polymer.2005.02.094
  14. P. M. Gyoo, S. Venkataramani, and S. C. Kim, J. Appl. Polym. Sci., 101, 1711 (2006). https://doi.org/10.1002/app.23339
  15. Y. L. Lu, Y. Zhang, G. B. Zhang, M. S. Yang, S. K. Yan, and D. Y. Shen, Polymer, 45, 8999 (2004). https://doi.org/10.1016/j.polymer.2004.10.025
  16. Z.-Z. Yu, M. S. Yang, Q. X. Zhang, C. G. Zhao, and Y.-W. Mai, J. Polym. Sci. Part B: Polym. Phys., 41, 1234 (2003). https://doi.org/10.1002/polb.10480
  17. X. H. Liu, Q. J. Wu, and L. A. Berglund, Polymer, 43, 4967 (2002). https://doi.org/10.1016/S0032-3861(02)00331-2
  18. Y. L. Lu, G. B. Zhang, M. Feng, Y. Zhang, M. S. Yang, and D. Y. Shen, J. Polym. Sci. Part B: Polym. Phys., 41, 2313 (2003). https://doi.org/10.1002/polb.10529
  19. S. J. Lee, Polym. Sci. Techn., 1, 134 (1990).
  20. M. T. Hahn, R. W. Hertzberg, J. A. Manson, and L. H. Sperling, Polymer, 27, 1885 (1986). https://doi.org/10.1016/0032-3861(86)90176-X
  21. D. P. N. Vlasveld, J. Groenewold, H. E. N. Bersee, and S. J. Picken, Polymer, 46, 12567 (2005). https://doi.org/10.1016/j.polymer.2005.10.096
  22. T. D. Fornes, P. J. Yoon, H. Keskkula, and D. R. Paul, Polymer, 42, 9929 (2001). https://doi.org/10.1016/S0032-3861(01)00552-3
  23. Z. Z. Yu, C. Yan, M. Yang, and Y. W. Mai, Polym. Int., 53, 1093 (2004). https://doi.org/10.1002/pi.1498
  24. S. S. Lee, M. Park, S. H. Lim, J. K. Kim, and J. T. Hwang, Polym. Sci. Techn., 18, 8 (2007).
  25. J. H. Choi, J. KIMST, 9, 88 (2006).
  26. B. Alexandre, D. Langevin, P. Mederic, T. Aubry, H. Couderc, Q. T. Nguyen, A. Saiter, and S. Marais, J. Membrane Sci., 328, 186 (2009). https://doi.org/10.1016/j.memsci.2008.12.004
  27. Q. X. Zhang, Z. Z. Yu, M. Yang, J. Ma, and Y. W. Mai, J. Polym. Sci. Part B: Polym. Phys., 41, 2861 (2003). https://doi.org/10.1002/polb.10608
  28. D. S. Homminga, B. Goderis, Vincent B. G. Mathot, and G. Groeninckx, Polymer, 47, 1630 (2006). https://doi.org/10.1016/j.polymer.2005.10.141
  29. B. Lin, A. Th men, H.-P. Heim, G. Scheel, and U. Sundararaj, Polym. Eng. Sci., 49, 824 (2009). https://doi.org/10.1002/pen.21327

Cited by

  1. Study of Moisture Desorption in Polymer Materials for Automotive Lamp vol.26, pp.5, 2018, https://doi.org/10.7467/KSAE.2018.26.5.638