DOI QR코드

DOI QR Code

헥사플루오르프로필렌 올리고머를 사용한 헥사플루오르프로필렌 옥사이드의 음이온 중합

Anionic Polymerization of Hexafluoropropylene Oxide Using Hexafluoropropylene Oligomer

  • 이상구 (한국화학연구원 그린화학연구단) ;
  • 하종욱 (한국화학연구원 그린화학연구단) ;
  • 박인준 (한국화학연구원 그린화학연구단) ;
  • 이수복 (한국화학연구원 그린화학연구단) ;
  • 이종대 (충북대학교 화학공학과)
  • Lee, Sang Goo (Division of Green Chemistry, Korea Research Institute of Chemical Technology) ;
  • Ha, Jong-Wook (Division of Green Chemistry, Korea Research Institute of Chemical Technology) ;
  • Park, In Jun (Division of Green Chemistry, Korea Research Institute of Chemical Technology) ;
  • Lee, Soo-Bok (Division of Green Chemistry, Korea Research Institute of Chemical Technology) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2012.08.20
  • 심사 : 2012.09.24
  • 발행 : 2013.01.25

초록

Hexafluoropropylene(HFP) dimer와 trimer로 구성된 올리고머의 조성비, 반응온도 그리고 hexafluoropropylene oxide(HFPO) 투입속도가 HFPO 음이온 중합반응에 미치는 영향 등을 알아보았다. HFP 올리고머는 불화금속 CsF와 TG를 사용한 음이온 반응을 통해 합성하였고, CsF 5 g, TG 10 g 그리고 반응온도 $0^{\circ}C$에서 합성된 HFP 올리고머의 dimer 함량은 상대적으로 높은 35.1%를 나타내었다. HFPO 음이온 중합의 경우, 반응온도 $0^{\circ}C$, HFP dimer 35.1%를 포함하고 있는 올리고머와 HFPO 투입속도 1.85 g/min에서 Cs(HFPO)n 알콕사이드는 상대적으로 원활한 사슬성장을 하면서 중량평균 분자량 3600을 나타내었다. 반면, 반응온도 $10^{\circ}C$ 및 증가된 HFPO 투입속도에서는 알콕사이드의 $F^{{\delta}-}$의 이탈현상을 촉진시켜 중평균 분자량은 감소되었다. 결론적으로, HFP 올리고머를 용매로 사용한 HFPO 음이온 중합반응의 사슬성장 및 사슬전이는 용매의 조성, 반응온도 및 단량체의 투입속도에 영향을 받고 있음을 알 수 있었다.

Anionic polymerization of hexafluoropropylene oxide (HFPO) was investigated under various reaction conditions such as various hexafluoropropylene (HFP) oligomers composed of dimer and trimer, reaction temperatures, and feeding rates of hexafluoropropylene oxide monomer. HFP oligomer was synthesized from cesium fluoride (CsF) and HFP in tetraethyleneglycol dimethylether (TG). Under 5 g of CsF, 200 g of HFP, 10 g of TG, and reaction temperature $30^{\circ}C$, HFP dimer content in oligomer was relatively increased. HFPO oligomer with a high molecular weight ($M_w$ 3600) was synthesized in conditions of reaction temperature $0^{\circ}C$, HFP oligomer with 35.1% of dimer, and 1.85 g/min of HFPO feeding rate. Otherwise, chain transfer was increased under unoptimized reaction conditions. Consequently, it was found that reaction conditions impact chain propagation and chain transfer in the anionic polymerization of HFPO.

키워드

참고문헌

  1. W. R. Jones and C. E. Snyder, ASLE Trans., 23, 253 (1980). https://doi.org/10.1080/05698198008982967
  2. J. F. Moulder, J. S. Hammond, and K. L. Smith, Appl. Surf. Sci., 25, 446 (1986). https://doi.org/10.1016/0169-4332(86)90087-5
  3. C. M. Mate, Tribol. Lett., 4, 119 (1998). https://doi.org/10.1023/A:1019107305988
  4. L. Laurenson, N. T. M. Dennis, and J. Newton, Vacuum, 29, 433 (1979). https://doi.org/10.1016/S0042-207X(79)80892-1
  5. M. Vertes, Vacuum, 44, 769 (1993). https://doi.org/10.1016/0042-207X(93)90306-U
  6. B. Bhushan, Trans. ASME. J. Tribol., 114, 420 (1992). https://doi.org/10.1115/1.2920901
  7. R. L. Fusaro, Lubr. Eng., 51, 182 (1995).
  8. E. V. Zaretsky, Tribol. Int., 23, 75 (1990). https://doi.org/10.1016/0301-679X(90)90041-M
  9. T. W. Del Pesco, "Perfluoropolyethers", in Synthetic Lubricants and High-Performance Functional Liquids, R. L. Shubkin, Editor, Marcel Dekker, New York, p 145 (1993).
  10. B. Bhushan, Wear, 136, 169 (1990). https://doi.org/10.1016/0043-1648(90)90079-P
  11. R. H. Mobbs, F. Heatley, C. Price, and C. Booth, Prog. Rubber Plast. Technol., 11, 94 (1995).
  12. D. Sianesi, V. Zamboni, R. Fontanelli, and M. Binaghi, Wear, 18, 85 (1971). https://doi.org/10.1016/0043-1648(71)90158-X
  13. Y. Ohsaka, Petrotech(Tokyo), 8, 840 (1985).
  14. Dupont, British Patent 904,877 (1962).
  15. E. Y. Park, S. G. Lee, J. W. Ha, I. J. Park, S. B. Lee, and Y. Lee, Polymer(Korea), 32, 397 (2008).
  16. W. H. Gumprecht, "The preparation and thermal behavior of hexapropylene epoxide polymers", in Proceedings of the Fourth International Symposium on Fluorine Chemistry, Colorado, 1967.
  17. E. P. Moore, U.S. Patent 3,322,826 (1967).
  18. F. L. Arbogast, U.S. Patent 3,412,148 (1968).
  19. S. G. Lee, J. W. Ha, I. J. Park, S. B. Lee, and J. D. Lee, Polymer(Korea), 32, 385 (2008).
  20. S. V. Kostjuk, E. Ortega, F. Ganachaud, B. Ameduri, and B. Boutevin, Macromolecules, 42, 612 (2009). https://doi.org/10.1021/ma8012338
  21. T. Martini, U.S. Patent 3,917,724 (1975).
  22. G. Alfons and V. W. Konrad, U.S. Patent 5,387,728 (1995).
  23. J. T. Hill, J. Macromol. Sci. Chem., A8, 499 (1974).
  24. T. E. Karis, B. Marchon, D. A. Hopper, and R. L. Siemens, J. Fluorine Chem., 118, 81 (2002). https://doi.org/10.1016/S0022-1139(02)00197-5
  25. S. G. Lee, K. W. Lee, J. W. Ha, W. W. So, I. J. Park, and S. B. Lee, Proc. 15th Eur. Symp. Fluorine Chem., Prague, p 364 (2007).