DOI QR코드

DOI QR Code

비닐리덴 플루오라이드와 헥사플루오르프로필렌 공중합체의 합성

Synthesis of Poly(vinylidene fluoride-co-hexafluoropropylene)

  • 이상구 (한국화학연구원 그린화학연구단) ;
  • 하종욱 (한국화학연구원 그린화학연구단) ;
  • 박인준 (한국화학연구원 그린화학연구단) ;
  • 이수복 (한국화학연구원 그린화학연구단) ;
  • 이종대 (충북대학교 화학공학과)
  • Lee, Sang Goo (Division of Green Chemistry, Korea Research Institute of Chemical Technology) ;
  • Ha, Jong-Wook (Division of Green Chemistry, Korea Research Institute of Chemical Technology) ;
  • Park, In Jun (Division of Green Chemistry, Korea Research Institute of Chemical Technology) ;
  • Lee, Soo-Bok (Division of Green Chemistry, Korea Research Institute of Chemical Technology) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2012.08.12
  • 심사 : 2012.10.06
  • 발행 : 2013.01.25

초록

Polyvinylidene fluoride(PVDF)와 다양한 조성을 갖는 P(VDF-co-HFP)를 개시제 diisopropyl peroxidicarbonate(DIPPDC)와 용매 R-113을 사용하는 용액중합방법을 통해 성공적으로 합성하였다. 공중합의 VDF와 hexafluoropropylene(HFP)의 반응성 비는 $r_{VDF}=2.06{\pm}0.03$$r_{HFP}{\approx}0$으로 확인되었다. 이결과는 HFP의 자가 사슬성장이 거의 일어나지 않는다는 것을 의미한다. 고분자의 중량평균 분자량 및 분포도는 HFP 함량이 증가할수록 점차적으로 감소하는 경향성을 보였다. 고분자의 녹는점은 HFP 함량이 증가할수록 결정화를 방해하기 때문에 선형적으로 낮아지는 경향성을 나타내었다. 더욱이 높은 HFP 함량에서는 녹는점이 발견되지 않았다. 고분자의 유리전이 온도의 경우, HFP 함량이 증가할수록 고분자사슬의 유동성을 감소시켜 점차적으로 상승하였다.

Polyvinylidene fluoride (PVDF) and its copolymer with hexafluoropropylene (HFP) were successfully prepared from free radical solution polymerizations using diisopropyl peroxidicarbonate (DIPPDC) in the presence of 1,1,2-trichlorotrifluoroethane (R-113). The reactivity ratios of VDF and HFP were estimated as$r_{VDF}=2.06{\pm}0.03$ and $r_{HFP}{\approx}0$. This result indicates that HFP cannot undergo self propagation. The weight-average molecular weight and molecular weight distribution of copolymers were found to decrease with increasing HFP content. The melting temperature of copolymers linearly decreased with the increase of HFP content because of the introduction of HFP. Moreover, no melting peak was observed for the copolymers with high HFP content. The glass transition temperature of copolymers gradually increased with the increase of HFP content due to the restricted flexibility of the polymer chains.

키워드

과제정보

연구 과제 주관 기관 : 산업자원부

참고문헌

  1. B. Ameduri and B. Boutevin, Well-Architectured Fluoropolymers: Synthesis, Properties and Applications, Elsevier, Amsterdam, 2004.
  2. U. Klinge, B. Klosterhalfen, A. P. Ottinger, K. Junge, and V. Schumpelick, Biomaterials, 23, 3487 (2002). https://doi.org/10.1016/S0142-9612(02)00070-4
  3. G. Hougham, T. Davidson, P. Cassidy, and K. Johns, Fluoropolymers, Kluvert, New York, 1999.
  4. J. Scheirs, J. Modern Fluoropolymer, Wiley, New York, 1997.
  5. A. E. Feiring, R. E. Banks, B. E. Smart, and J. C. Tatlow, Organofluorine Chemistry: Principles and Commercial Applications, Plenum Press, New York, Vol 15, p 339 (1994).
  6. Y. Bar-Cohen, Electoactive Polymer (EAP) Actuators as Artificial Muscles, SPIE, Bellingham, WA, 2001.
  7. T. T. Wang, J. M. Herbert, and A. M. Glass, Application of the Ferroelectric Polymers, Blackie, Chapman & Hall, New York, 1988.
  8. H. Nalwa, Ferroelectric Polymers, Marcel Dekker, New York, 1995.
  9. Y. Yang, S. Ramalingam, G. Wu, S. L. Hsu, L. W. Kleiner, F. W. Tang, N. Ding, and S. Hssainy, Polymer, 49, 1926 (2008). https://doi.org/10.1016/j.polymer.2008.02.015
  10. S. J. Kang, I. Bae, Y. J. Shin, Y. J. Park, J. Huh, S. M. Park, H. C. Kim, and C. Park, Nano Lett., 11, 138 (2011). https://doi.org/10.1021/nl103094e
  11. H. Tai, W. Wang, and S. M. Howdle, Macromolecules, 38, 9135 (2005). https://doi.org/10.1021/ma0511346
  12. B. Ameduri and M. P. Gelin, J. Fluorine Chem., 126, 577 (2005).
  13. L. I. Costa, G. Storti, M. Morbidelli, L. Ferro, O. Scialdone, G. Filardo, and A. Galia, Macromolecules, 43, 9714 (2010). https://doi.org/10.1021/ma101790q
  14. B. Soresi, E. Quartarone, P. Mustarelli, A. Magistris, and G. Chiodelli, Solid State Ionics, 166, 383 (2004). https://doi.org/10.1016/j.ssi.2003.11.027
  15. J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, J. Electrochem. Soc., 152, A295 (2005). https://doi.org/10.1149/1.1839531
  16. J. M. Tarascon, A. S. Gozdz, C. N. Schmutz, F. Shukoki, and P. C. Warren, Solid State Ionics, 49, 86 (1996).
  17. G. J. Ross, J. F. Watt, M. P. Hill, and P. Morrissey, Polymer, 41, 1685 (2000). https://doi.org/10.1016/S0032-3861(99)00343-2
  18. A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon, U.S.Patent 5,296,318 (1994).
  19. J. Y. Song, Y. Y. Wang, and C. C. Wan, J. Power Source, 77, 183 (1999). https://doi.org/10.1016/S0378-7753(98)00193-1
  20. J. A. Abusleme and P. Gavezotti, U.S.Patent 5,569,728 (1995).
  21. T. S. Ahmed, J. M. Desimone, and G. W. Roberts, Macromolecules, 41, 3086 (2008). https://doi.org/10.1021/ma702526u
  22. T. S. Ahmed, J. M. Desimone, and G. W. Roberts, Macromolecules, 39, 15 (2006).
  23. J. E. Dohany, U.S.Patent 4,360,652 (1982).
  24. J. Blais and E. Grimaud, U.S.Patent 4,025,709 (1977).
  25. F. J. Honn and J. M. Hoyt, U.S.Patent 3,053,818 (1962).
  26. L. A. Barber, U.S.Patent 6,187,885 (2001).
  27. J. E. Dohany, U.S.Patent 3,781,265 (1973).
  28. P. Y. Mabboux and K. K. Gleason, J. Fluorine Chem., 113, 27 (2002). https://doi.org/10.1016/S0022-1139(01)00440-7
  29. R. E. Banks, B. E. Smart, and J. C. Tatlow, Organofluorine Chemistry: Principles and Commercial Applications, Plenum, New York, 1994.