DOI QR코드

DOI QR Code

Effect of Anodic Oxidation of H2SO4/HNO3 Ratio for Improving Interfacial Adhesion between Carbon Fibers and Epoxy Matrix Resins

탄소섬유와 에폭시 기지의 계면강도 증가를 위한 황산/질산 양극산화에 관한 영향

  • Moon, Cheol-Whan (Department of Organic and Nano Engineering, Hanyang University) ;
  • Jung, Gun (Department of Polymer Nano Science & Technology, Chonbuk National University) ;
  • Im, Seung-Soon (Department of Organic and Nano Engineering, Hanyang University) ;
  • Nah, Changwoon (Department of Polymer Nano Science & Technology, Chonbuk National University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • 문철환 (한양대학교 유기나노공학과) ;
  • 정건 (전북대학교 고분자.나노공학과) ;
  • 임승순 (한양대학교 유기나노공학과) ;
  • 나창운 (전북대학교 고분자.나노공학과) ;
  • 박수진 (인하대학교 화학과)
  • Received : 2012.08.09
  • Accepted : 2012.09.23
  • Published : 2013.01.25

Abstract

In this work, the anodic oxidation of carbon fibers was carried out to enhance the mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites. The surface characteristics of the carbon fibers were studied by FTIR, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Also, the mechanical interfacial properties of the composites were studied with interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and critical strain energy release rate ($G_{IC}$). The anodic oxidation led to a significant change in the surface characteristics of the carbon fibers. The anodic oxidation of carbon fiber improved the mechanical interfacial properties, such as ILSS, $K_{IC}$, and $G_{IC}$ of the composites. The mechanical interfacial properties of the composites anodized at 20% sulfuric/nitric (3/1) were the highest values among the anodized carbon fibers. These results were attributed to the increase of the degree of adhesion at interfaces between the carbon fibers and the matrix resins in the composite systems.

본 실험에서는, 양극산화 처리된 탄소섬유의 표면변화가 탄소섬유강화 복합재료의 기계적 계면특성을 통하여 살펴보았다. 양극산화 처리된 탄소섬유의 표면특성은 FTIR, XPS, 그리고 SEM을 통하여 알아보았다. 복합재료의 기계적 계면특성은 층간전단강도(interlarminar shear strength; ILSS)와 임계세기인자(critical stress intensity factor; $K_{IC}$) 그리고 임계변형속도에너지(critical strain energy release rate; $G_{IC}$)를 통하여 고찰하였다. 실험결과 양극산화에 의한 각각의 표면 처리된 탄소섬유는 표면특성의 변화를 가져오며, 복합재료의 ILSS, $K_{IC}$, 그리고 $G_{IC}$같은 기계적 계면특성은 탄소섬유의 양극산화를 통하여 향상되어진다. 전해질이 20% 황산/질산(3/1)일 때 다른 전해질보다 기계적 물성의 가장 큰 향상을 보였다. 이는 양극산화로 탄소섬유와 매트릭스 사이의 계면결합력의 향상때문이라 판단된다.

Keywords

References

  1. M. M. Schwartz, Composite Materials Handbook, 2nd ed., Mc Grawhill, New York, 1992.
  2. D. H. Middleton, Composite Materials in Aircraft Structures, John Wiely, New York, 1990.
  3. J. B. Donnet and R. C. Bansal, Carbon Fibers, 2nd ed., Marcel Dekker, New York, 1990.
  4. E. Jeong, J. Kim, S. H. Cho, J. I. Kim, I. S. Han, and Y. S. Lee, J. Ind. Eng. Chem., 17, 191 (2011). https://doi.org/10.1016/j.jiec.2011.02.032
  5. S. J. Park and M. K. Seo, Interface Science and Composites, Elsevier, New York, 2011.
  6. M. S. Ha, O. Y. Kwon, and H. S. Choi, J. Korean Soc. Compos. Mater., 23, 31 (2010)
  7. C. A. Mahieux, Compos. Struct., 52, 517 (2001). https://doi.org/10.1016/S0263-8223(01)00041-1
  8. R. S. Bauer, Epoxy Resin Chemistry, American Chemical Society, Washington DC, 1979.
  9. D. R. Bortz, C. Merino, and I. Martin-Gullon, Compos. Part A: Appl. Sci. Manuf., 42, 1584 (2011). https://doi.org/10.1016/j.compositesa.2011.07.002
  10. X. Zhiwei, H. Yudong, S. Yuanjun, Z. Chunhua, and L. Li, J. Rare Earths, 25, 462 (2007). https://doi.org/10.1016/S1002-0721(07)60457-8
  11. J. Rams, A. Urena, M. D. Escalera, and M. Sanchez, Compos. Part A: Appl. Sci. Manuf., 38, 566 (2007). https://doi.org/10.1016/j.compositesa.2006.02.010
  12. S. J. Park and J. B. Donnet, J. Colloid Interface Sci., 206, 29 (1998). https://doi.org/10.1006/jcis.1998.5672
  13. E. Fitzer, Carbon Fibers and Their Composites, Springer-Verlag, New York, 1985.
  14. J. B. Alms, S. G. Advani, and J. L. Glancey, Compos. Part A: Appl Sci. Manuf., 42, 57 (2011). https://doi.org/10.1016/j.compositesa.2010.10.002
  15. P. Gopal, L. R. Dharani, and F. D. Blum, Polym. Polym. Compos., 5, 327 (1997).
  16. A. M. Youssef, A. I. Ahmed, and U. A. EI-Bana, Carbon Lett., 13, 61 (2012). https://doi.org/10.5714/CL.2012.13.2.061
  17. D. H. Kaeble, J. Adhes., 2, 66 (1970). https://doi.org/10.1080/0021846708544582
  18. A. Griffith, Phil. Trans. R. Soc. Lond., A221, 163 (1920).
  19. S. J. Park, D. I. Seo, and C. Nah, J. Colloid Interface Sci., 251, 225 (2002). https://doi.org/10.1006/jcis.2002.8336
  20. T. G. Pressly, H. Keskkula, and D. R. Paul, Polym. J., 42, 3043 (2001). https://doi.org/10.1016/S0032-3861(00)00696-0
  21. S. J. Park, M. H. Kim, S. Choi, and J. R. Lee, Polymer(Korea), 24, 499 (2000).

Cited by

  1. Carbonization of Pitch-coated Glass Fibers on Thermal Conductivity of Epoxy Composites vol.26, pp.5, 2013, https://doi.org/10.7234/composres.2013.26.5.315
  2. Influence of MWCNTs on Fracture Toughness of MWCNTs/Nickel-Pitch Fiber/Epoxy Composites vol.28, pp.6, 2013, https://doi.org/10.7234/composres.2015.28.6.361