DOI QR코드

DOI QR Code

Prediction of Shear Strength of Slender Reinforced Concrete Beams with and without Shear Reinforcement Using ANFIS

ANFIS를 이용한 세장한 전단보강 및 전단무보강 철근콘크리트 보의 전단강도 예측

  • Received : 2013.08.07
  • Published : 2013.12.25

Abstract

An analytical method based on fuzzy theory was developed for accurate evaluation of the shear strength of slender reinforced concrete beams with and without shear reinforcement. 636 experimental datasets of shear tests of simply supported reinforced concrete beams, which cover a wide range of design parameters, were used for training and validation of the proposed fuzzy-based model. The strength prediction by the proposed model was compared to those by current design codes including the American code (ACI 318-11) and the Euro code (EC2). The results showed that proposed model based on the fuzzy set theory can properly address the complicated interaction between various modeling parameters, and the fuzzy-based model enhances the prediction of the shear strength.

Keywords

Acknowledgement

Supported by : 국토해양부

References

  1. ASCE-ACI Committee 426. "The shear strength of reinforced concrete members", J. Struct. Div., ASCE, V. 99, No. 6, p.p. 1091-1187, 1973
  2. MacGregor, J. G., and Wight, J. K., "Reinforced Concrete: Mechanics and Design", Fourth edition, Pearson Prentice hall, NewJersey, 1132 p.p., 2005
  3. Kotsovos, M. D., and Pavlovic, M. N., "Ultimate limit-sate design of concrete structures: a new approach", Thomas Telford, London, 208 p.p., 1998
  4. Tureyen, A. K., and Frosch, R. J., "Concrete Shear Strength: Another Perspective", ACI Structural Journal, V. 100, No. 5, Sept.-Oct. p.p. 609-615, 2003
  5. Zararis, P. D., and Papadakis, G. C., "Diagonal shear failure and size effect in RC beams without web reinforcement", J. Struct. Engrg., ASCE, V. 127, No. 7, p.p. 733-742, 2001 https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733)
  6. Mphonde, A. G., "Use of stirrup effectiveness in shear design of concrete beams", ACI Struct. J., V. 86, No. 5, p.p. 541-545, 1989
  7. Mathey, R. G., and Watstein, D., "Shear strength of beams without web reinforcement containing deformed bars of different yield strengths", ACI J., V. 60, No. 2, p.p. 183-208, 1963
  8. Taylor, H. P. J., "Shear strength of large beams", J. Struct. Div., ASCE, V. 98, No. 11, p.p. 2473-2490, 1972
  9. Leonhardt, F., and Walther, R., "Schubversuche an einfeldrigen stahlbetonbalken mit und ohne schubbewehrung zur ermittlung der schubtragfahigkeit und der oberen schubspannungsgrenze", DAfStb, Heft 151, W. Ernst u. Sohn,Berlin(inGerman), 1962
  10. Kani, G. N. J., "The riddle of shear failure and its solution", ACI J., V. 61, No. 2, p.p. 441-467, 1964
  11. Kani, G. N. J., "How safe are our large reinforced concrete beams", ACI J., V. 64, No. 3, p.p. 128-141, 1967
  12. Shioya, T., Iguro, M., Nojiri, Y., Akiayma, H., and Okada, T., "Shear strength of large reinforced concrete beams, fracture mechanics: application to concrete", ACI, SP-118, p.p. 259-279, 1989
  13. Kotsovos, M. D., and Pavlović, M. N., "Ultimate limit-sate design of concrete structures: a new approach", Thomas Telford, London, p.p. 208, 1998
  14. Collins, M. P., and Mitchell, D. A., "rational approach to shear design-The 1984 Canadian code provisions", ACI J., V. 83, No. 6, p.p. 925-933, 1986
  15. ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary (ACI 318R-11)", American Concrete Institute, USA, 503 p.p., 2011
  16. Eurocode 2, "Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings", CEN, EN 1992-1-1, Brussels, Belgium, 225 p.p., 2004
  17. Ross, T. J., "Fuzzy Logic with Engineering Applications", 3nd Ed., Wiley & Sons, UK. 585 p.p., 2010
  18. Jang, J. -S. R., "ANFIS: Adaptive-Network-Based Fuzzy Inference System", IEEE Transactions on systems, V. 23, No. 3, p.p. 665-685, 1993
  19. Chang, N. B., Chen, Y. L., and Chen, H. W., "A Fuzzy Regression Analysis for the Construction Cost Estimation of Wastewater Treatment Plants (1) Theoretical Development", Department of Environmental Engineering., V. 32, No. 4, p.p. 885-899, 1997
  20. Xiong, L., Shamseldin, A. Y., and O'Connor, K. M., "A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system", Journal of Hydrology., V. 245, p.p. 196-217, 2001 https://doi.org/10.1016/S0022-1694(01)00349-3
  21. Sugeno, M., and Kang, G. T., "Structure Identification of Fuzzy Model. Fuzzy sets and systems", V. 28, p.p. 15-33, 1988 https://doi.org/10.1016/0165-0114(88)90113-3
  22. Bezdek, J. C., Grimball, N. T., Carson, J. M., and Ross, T. J., "Structural failure determination with fuzzy sets", Civil Engineering Systems.V. 3, p.p. 82-92, 1986 https://doi.org/10.1080/02630258608970430
  23. Jang, J. S. R., Su, C. T., and Mizutani, E., "Neuro-Fuzzy and soft computing, A computational approach to learning and machine intelligence", Prentice Hall, NJ, USA. 1997
  24. Klir, G. J., "Uncertainty and Information: Foundations of Generalized Information Theory", John Wiley and Sons. NJ, USA. 2006
  25. Kim, C. J., and Russel, B. D., "Automated Generation of membership functions and fuzzy rule using inductive reasoning", IEEE Transaction, paper 0-7803-1485-9/93, 1993
  26. Bezdek, J., "Pattern Recognition With Fuzzy Objective Function Algorithms", NewYork: Plenum. 1981
  27. Wang, L. X., and Mendel, J. M., "Generating Fuzzy Rules by Learning from Examples", IEEE Transactions on systems, V. 22, No. 6, p.p. 1414-1427, 1992
  28. Yamakawa, T., "A fuzzy logic controller", J. Biotechnol., V. 24, p.p. 1-32, 1992 https://doi.org/10.1016/0168-1656(92)90059-I
  29. Hopfield, J., "Neural networks and physical system with emergent collective computational abilities", Proc. Natl. Acad. Sci .USA, V. 79, p.p. 2554-2558, 1982 https://doi.org/10.1073/pnas.79.8.2554
  30. Hopfield, J., and Tank, D., "Computing with neural circuits: a model. Science", V. 233, p.p. 625-633, 1986 https://doi.org/10.1126/science.3755256
  31. Takagi, T., and Sugeno, M., "Fuzzy identification of system and its applications to modeling and control", IEEE Trans.Syst. Cybern. V. 15. p.p. 116-132, 1985
  32. Takagi, T., and Sugeno, M., "Derivation of fuzzy control rules from human operator's control actions", In proc. IFAC Symp. Fuzzy Inform., Knowledge Representation and Decision Alalysis, p.p. 55-60, 1983
  33. Takagi, H., and Hayashi, "NN-Driven Fuzzy Reasoning", International Journal of Approximate Reasoning, V. 5, No. 3, p.p. 191-212, 1991 https://doi.org/10.1016/0888-613X(91)90008-A
  34. Diebolt, J., and Robert, C. P., "Estimation of finite mixture distributions through Bayesian sampling", Journal of Royal Statistical Society B., V. 56, p.p. 363-375, 1994
  35. Carlin, B. P., and Chib, S., "Bayesian Model Choice via Markov Chain Monte Carlo Methods", J. of the Royal Statistical Society. Series B, V. 57, No. 3, p.p. 473-484, 1995
  36. Choi, K. K., Sherif, A. G., Taha, M. M. R., and Chung, L., "Shear strength of slender reinforced concrete beams without web reinforcement: A model using fuzzy set theory", Engineering Structures, V. 31, p.p. 768-777, 2009 https://doi.org/10.1016/j.engstruct.2008.11.013
  37. Berenji, H. R., and Khedkar, P., "Learning and tuning fuzzy logic controllers through reinforcements", IEEE Transactions on Neural Networks, V. 3, No. 5, p.p. 724-740, 1992 https://doi.org/10.1109/72.159061
  38. Zadeh, L. A., "Fuzzy Sets, Information and Control", V. 8, No. 3, p.p. 338-353, 1965 https://doi.org/10.1016/S0019-9958(65)90241-X
  39. Fan, J. Y., and Yuan, Y. X., "On the Convergence of a New Levenberg-Marquardt Method", Technical Report, AMSS, Chinese Academy of Sciences, p.p. 11, 2001
  40. $MATLAB^{(R)}$ "The Language of Technical Computing", The Math Works Inc. 1998
  41. Choi, K. K., Park, H. G., and Wight, J. K., "Unified shear strength model for reinforced concrete beams-Part I: Development", ACI J., V. 104, No. 2, p.p. 142-152, 2007
  42. Choi, K. K., and Park, H. G., "Unified shear strength model for reinforced concrete beams-Part II: Verification and Simplified method", ACI J., V. 104, No. 2, p.p. 153-161, 2007