DOI QR코드

DOI QR Code

Speed-up of Image Matching Using Feature Strength Information

특징 강도 정보를 이용한 영상 정합 속도 향상

  • Kim, Tae-Woo (Dept. of Information & Communication Engineering, Hanyang Cyber University)
  • 김태우 (한양사이버대학교 정보통신공학과)
  • Received : 2013.10.13
  • Accepted : 2013.12.13
  • Published : 2013.12.31

Abstract

A feature-based image recognition method, using features of an object, can be performed faster than a template matching technique. Invariant feature-based panoramic image generation, an application of image recognition, requires large amount of time to match features between two images. This paper proposes a speed-up method of feature matching using feature strength information. Our algorithm extracts features in images, computes their feature strength information, and selects strong features points which are used to match the selected features. The strong features can be referred to as meaningful ones than the weak features. In the experiments, it was shown that our method speeded up over 40% of processing time than the technique without using feature strength information.

특징 기반 영상 인식 방법은 객체의 특징을 이용하므로 템플릿 정합에 비해 고속으로 수행될 수 있다. 불변 특징 기반의 파노라마 생성은 영상 인식의 한 응용으로서, 두 영상 간의 특징점 정합에 많은 처리 시간이 필요하다. 본 논문에서는 특징 강도 정보를 이용하여 특징점 정합 속도를 향상시키는 방법을 제안한다. SURF 알고리즘으로 특징점들을 추출한 후, 특징 강도 정보를 계산하여 강한 특징점들을 선택하여 특징 정합에 사용한다. 특징 강도가 강한 특징점들은 그렇지 않은 특징점들 보다 더 의미 있다고 볼 수 있다. 실험에서 $320{\times}240$ 크기의 칼라 영상에 대해 제안한 방법은 특징 강도 정보를 사용하지 않았을 때보다 40% 이상 처리 속도의 향상을 보였다.

Keywords

References

  1. David G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," International Journal of Computer Vision, 2004
  2. Matthew Brown and David Lowe, "Invariant Features from Interest Point Groups", In Proceedings of the 13th British Machine Vision Conference, pp. 253-262, Cardiff, 2002
  3. Matthew Brown and David G. Lowe, "Automatic Panoramic Image Stitching using Invariant Features", International Journal of Computer Vision, Vol. 74(1), pp. 59-73, 2007 https://doi.org/10.1007/s11263-006-0002-3
  4. M. Brown and D. G. Lowe, "Recognising Panoramas", In Proceedings of the 9th International Conference on Computer Vision (ICCV03), volume 2, pp. 1218-1225, Nice, October 2003
  5. Heung-Yeung Shum and Richard Szeliski, "Panoramic Image Mosaics," Technical Report, MSR-TR-97-23, 2003
  6. Richard Szeliski, "Image Alignment and Stitching: A Tutorial", Technical Report, MSR-TR-2004-92, 2004
  7. David G. Lowe, "Object Recognition from Local Scale-Invariant Features", In Proceedings of International Conference on Computer Vision, pp. 1150-1157, Corfu, Greece, September 1999
  8. Edward Rosten and Tom Drummond, "Machine learning for high-speed corner detection", In proceedings of ECCV 2006, Berlin/Heidelberg: Springer-Verlag, 2006, pp. 430-443
  9. Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, "Speeded-Up Robust Features (SURF)", Computer Vision and Image Understanding, Vol. 110(3), 2008, pp. 346-359 https://doi.org/10.1016/j.cviu.2007.09.014
  10. R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, 2nd, Wiley, 2001
  11. M. Fischler and R. Bolles, "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartograohy," Communications of the ACM, 24(6), 381-395
  12. B. J. Bae, J. S. Park, "Outlier Removal in Feature Point Matching Using Residual Magnitude", Journal of Korean Institute of Information Technology, vol. 8, issue 11, pp. 239-250, November 2010.
  13. T. W. Kim, H. J. Yoo, "Construction of Panoramic Images Based on Invariant Features", Journal of the Korea Academia-Industrial cooperation Society, v.7, no.7, pp. 1214-1218, June 2006.
  14. I. K. Park, B. H. Ahn, G. S. Choi, "Detection of Face Features using Extended Valley Energy", The Journal of The Institute of Internet, Broadcasting and Communication, vol. 9, issue 3, pp. 187-192, June 2009.

Cited by

  1. A Study on Adaptive Skin Extraction using a Gradient Map and Saturation Features vol.15, pp.7, 2014, https://doi.org/10.5762/KAIS.2014.15.7.4508