DOI QR코드

DOI QR Code

Top-down 방식으로 제작한 실리콘 나노와이어 ISFET 의 전기적 특성

A Study on the Electrical Characterization of Top-down Fabricated Si Nanowire ISFET

  • 김성만 (서울테크노파크 차세대융합기술연구소) ;
  • 조영학 (서울테크노파크 차세대융합기술연구소) ;
  • 이준형 (서울테크노파크 차세대융합기술연구소) ;
  • 노지형 (전자부품연구원 차세대융합센서 연구센터) ;
  • 이대성 (전자부품연구원 차세대융합센서 연구센터)
  • Kim, Sungman (R&D Institute of Advanced Convergence Technology, Seoul Technopark) ;
  • Cho, Younghak (R&D Institute of Advanced Convergence Technology, Seoul Technopark) ;
  • Lee, Junhyung (R&D Institute of Advanced Convergence Technology, Seoul Technopark) ;
  • Rho, Jihyoung (Next Generation Convergence Sensor Research Center, Korea Electronics Technology Institute) ;
  • Lee, Daesung (Next Generation Convergence Sensor Research Center, Korea Electronics Technology Institute)
  • 투고 : 2012.06.19
  • 심사 : 2012.10.04
  • 발행 : 2013.01.01

초록

Si Nanowire (Si-NW) arrays were fabricated by top-down method. A relatively simple method is suggested to fabricate suspended silicon nanowire arrays. This method allows for the production of suspended silicon nanowire arrays using anisotropic wet etching and conventional MEMS method of SOI (Silicon-On-Insulator) wafer. The dimensions of the fabricated nanowire arrays with the proposed method were evaluated and their effects on the Field Effect Transistor (FET) characteristics were discussed. Current-voltage (I-V) characteristics of the device with nanowire arrays were measured using a probe station and a semiconductor analyzer. The electrical properties of the device were characterized through leakage current, dielectric property, and threshold voltage. The results implied that the electrical characteristics of the fabricated device show the potential of being ion-selective field effect transistors (ISFETs) sensors.

키워드

참고문헌

  1. Moore, G. E., "Progress in digital intergrated electronics," International Electron Devices Meetings Technical Digest, pp. 11-13, 1975.
  2. Haensch, W., Nowak, E. J., Dennard, R. H., Solomon, P. M., Bryant, A., Dokumaci, O. H., Kumar, A., Wang, X., Johnson, J. B., and Fischetti, M. V., "Silicon CMOS devices beyond scaling," IBM J. Res. Dev., Vol. 50, pp. 339-361, 2006. https://doi.org/10.1147/rd.504.0339
  3. Chau, R. S., Ghani, T., Mistry, K., Tyagi, S., and Bohr, M. T., "In search of forever continued transistor scaling one new material at a time," IEEE Trans. Semicond. Manuf., Vol. 18, pp. 26-36, 2005. https://doi.org/10.1109/TSM.2004.841816
  4. Service, R. F., "New Age Semiconductors Pick Up the Pace," Science, Vol. 287, pp. 415-417, 2000. https://doi.org/10.1126/science.287.5452.415
  5. Uchikoga, S., "Low-Temperature Polycrystalline Silicon Thin-Film Transistor Technologies for System-on-Glass Displays," MRS Bull., Vol. 27, pp. 881-886, 2002. https://doi.org/10.1557/mrs2002.277
  6. Wisnieff, R. L. and Ritsko, J. J., "Electronic displays for information technology," IBM J. Res. Dev., Vol. 44, pp. 409-422, 2000. https://doi.org/10.1147/rd.443.0409
  7. Cui, Y., Wei, Q., Park, H., and Lieber, C. M., "Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species," Science, Vol. 293, pp. 1289-1292, 2001. https://doi.org/10.1126/science.1062711
  8. Yeo, K. H., Suk, S. D., Li, M., Yeoh, Y.-Y., Cho, K. H., Hong, K.-H., Yun, S. K., Lee, M. S., Cho, N. M., Lee, K. H., Hwang, D. H., Park, B. K., Kim, D.-W., Park, D., and Ryu, B.-I., "Gate-All-Around (GAA) Twin Silicon Nanowire MOSFET (TSNWFET) with 15 nm length gate and 4 nm radius nanowires," Proc. International Electron Devices Meetings Technical Digest, pp. 1-4, 2006.
  9. Cheng, Y. T., Cho, Y. H., Takama, N., Löw, P., Bergaud, C., and Kim, B. J., "Simple fabrication of Si nanowire and its biological application," Journal of Physics: Conference Series, Vol. 152, No. 1, Paper No. 012048, 2009.