DOI QR코드

DOI QR Code

Rapid Genotyping of MSTN Gene Polymorphism Using High-resolution Melting for Association Study in Rabbits

  • Peng, Jin (Institute of Animal Genetics and Breeding, Sichuan Agricultural University) ;
  • Zhang, Gong-Wei (Institute of Animal Genetics and Breeding, Sichuan Agricultural University) ;
  • Zhang, Wen-Xiu (Institute of Animal Genetics and Breeding, Sichuan Agricultural University) ;
  • Liu, Yun-Fu (Institute of Animal Genetics and Breeding, Sichuan Agricultural University) ;
  • Yang, Yu (Institute of Animal Genetics and Breeding, Sichuan Agricultural University) ;
  • Lai, Song-Jia (Institute of Animal Genetics and Breeding, Sichuan Agricultural University)
  • Received : 2012.07.09
  • Accepted : 2012.09.10
  • Published : 2013.01.01

Abstract

The myostatin (MSTN) gene, as a negative regulator of skeletal muscle growth, has been proposed to be associated with production traits in farm animals. In the present study, a T/C variant at -125 bp (relative to ATG start codon) of 5'regulatory region of rabbit MSTN was identified by direct sequencing. Two hundred and twenty two rabbits, which were randomly sampled from 3 breeds (Ira rabbits, Champagne rabbits and Tianfu black rabbits), were genotyped by high-resolution melting (HRM). Comparing the genotyping results of 47 samples with direct sequencing, the HRM showed high sensitivity (0.96) and high specificity (0.98). In the three rabbit breeds, the allele C was the predominant allele. The polymorphic site showed high heterozygosity (He = 0.48) and high effective number of alleles (Ne = 1.91). The genetic diversity was reasonably informative (0.25

Keywords

References

  1. Bindu, K. A., A. Raveendran, S. Antony and K. V. Raghunandanan. 2012. Association of myostatin gene (MSTN) polymorphism with economic traits in rabbits. In: Fibre Production in South American Camelids and Other Fibre Animals (Ed. M. A. Perez-Cabal, J. P. Gutierrez, I. Cervantes and M. J. Alcalde). Wageningen Academic Publishers, Wageningen, Netherlands. pp. 131-133.
  2. Blasco, A., J. Ouhayoun and G. Masoero. 1993. Harmonization of criteria and terminology in rabbit meat research. World Rabbit Sci. 1:03-10.
  3. Bunn, C. F., C. J. Lintott, R. S. Scott and P. M. George. 2002. Comparison of SSCP and DHPLC for the detection of LDLR mutations in a New Zealand cohort. Hum. Mutat. 19:311.
  4. Dawid, E., S. Buhl, S. Weber, R. Jager and H. Schorle. 2005. The AP-2 family of transcription factors. Genome Biol. 6:246. https://doi.org/10.1186/gb-2005-6-13-246
  5. Esmailizadeh, A. K., C. D. K. Bottema, G. S. Sellick, A. P. Verbyla, C. A. Morris, N. G. Cullen and W. S. Pitchford. 2008. Effects of the myostatin F94L substitution on beef traits. J. Anim. Sci. 86:1038-1046.
  6. Fontanesi, L., M. Tazzoli, E. Scotti and V. Russo. 2008. Analysis of candidate genes for meat production traits in domestic rabbit breeds. In: 9th World Rabbit Congress, Verona, Italy. pp. 79-84.
  7. Fontanesi, L., E. Scotti, A. Frabetti, D. Fornasini, A. Picconi and V. Russo. 2011. Identification of polymorphisms in the rabbit (Oryctolagus cuniculus) myostatin (MSTN) gene and association analysis with finishing weight in a commercial rabbit population. Anim. Genet. 42:339.
  8. Garritano, S., F. Gemignani, C. Voegele, T. Nguyen-Dumont, F. L. Calvez-Kelm, D. D. Silva, F. Lesueur, S. Landi and S. V. Tavtigian. 2009. Determining the effectiveness of High Resolution Melting analysis for SNP genotyping and mutation scanning at the TP53 locus. BMC. Genet. 10:5.
  9. Grisolia, A. B., G. T. D'Angelo, L. R. P. Neto, F. Siqueira and J. F. Garcia. 2009. Myostatin (GDF8) single nucleotide polymorphisms in Nellore cattle. Genet. Mol. Res. 8:822-830. https://doi.org/10.4238/vol8-3gmr548
  10. Han, S. H., I. C. Cho, M. S. Ko, E. Y. Kim, S. P. Park, S. S. Lee and H. S. Oh. 2012. A promoter polymorphism of MSTN g.-371T>A and its associations with carcass traits in Korean cattle. Mol. Biol. Rep. 39:3767-3772. https://doi.org/10.1007/s11033-011-1153-z
  11. Kirk, B. W., M. Feinsod, R. Favis, R. M. Kliman and F. Barany. 2002. Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Res. 30: 3295-3311. https://doi.org/10.1093/nar/gkf466
  12. Kunhareang, S., H. Zhou and J. G. H. Hickford. 2009. Allelic variation in the porcine MYF5 gene detected by PCR-SSCP. Mol. Biotechnol. 41:208-212. https://doi.org/10.1007/s12033-008-9122-z
  13. Kurkute, A. S., A. K. Tripathi, N. Shabir, C. V. Jawale, U. V. Ramani, A. M. Pande, D. N. Rank and C. G. Joshi. 2011. Molecular cloning and characterization of rabbit myostatin gene. IIOAB J. 2:1-7.
  14. Laurie, A. D. and P. M. George. 2009. Evaluation of high-resolution melting analysis for screening the LDL receptor gene. Clin. Biochem. 42:528-535. https://doi.org/10.1016/j.clinbiochem.2008.11.015
  15. Lin, C. S., Y. C. Wu, Y. L. Sun and M. C. Huang. 2002. Postnatal expression of growth/differentiation factor-8 (GDF-8) gene in European and Asian pigs. Asian-Aust. J. Anim. 15:1244-1249. https://doi.org/10.5713/ajas.2002.1244
  16. Lu, J., S. Hou, W. Huang, J. Yu and W. Wang. 2011. Polymorphisms in the myostatin gene and their association with growth and carcass traits in duck. Afr. J. Biotechnol. 10: 11309-11312.
  17. Martino, A., T. Mancuso and A. M. Rossi. 2010. Application of high-resolution melting to large-scale, high-throughput SNP genotyping: a comparison with the $TaqMan^{(R)}$ method. J. Biomol. Screen 15:623-629. https://doi.org/10.1177/1087057110365900
  18. McPherron, A. C., A. M. Lawler and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new $TGF-{\beta}$ superfamily member. Nature 387:83-90. https://doi.org/10.1038/387083a0
  19. Montgomery, J., C. T. Wittwer, R. Palais and L. Zhou. 2007. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat. Protoc. 2:59-66. https://doi.org/10.1038/nprot.2007.10
  20. Raghavendra, A., A. Siji, T. S. Sridhar, K. Phadke and A. Vasudevan. 2011. Evaluation of High Resolution Melting analysis as an alternate tool to screen for risk alleles associated with small kidneys in Indian newborns. BMC. Nephrol. 12:60. https://doi.org/10.1186/1471-2369-12-60
  21. Sadkowski, T., M. Jank, L. Zwierzchowski, E. Siadkowska, J. Oprzadek and T. Motyl. 2008. Gene expression profiling in skeletal muscle of Holstein-Friesian bulls with single-nucleotide polymorphism in the myostatin gene 5'-flanking region. J. Appl. Genet. 49:237-250. https://doi.org/10.1007/BF03195620
  22. Sun, W., D. Li, P. Wang, H. H. Musa, J. T. Ding, B. C. Li, Y. H. Ma, W. J. Guan, M. X. Chu, L. Chen, Y. F. Zhang, W. Z. Wu and H. Zhou. 2012. Postnatal expression of myostain (MSTN) and myogenin (MYoG) genes in Hu sheep of China. Afr. J. Biotechnol. 11:12246-12251.
  23. Wiener, P., J. A. Smith, A. M. Lewis, J. A. Woolliams and J. L. Williams. 2002. Muscle-related traits in cattle: the role of the myostatin gene in the South Devon breed. Genet. Sel. Evol. 34: 221-232. https://doi.org/10.1186/1297-9686-34-2-221
  24. Zhang, C., Y. Liu, D. Xu, Q. Wen, X. Li, W. Zhang and L. Yang. 2012. Polymorphisms of myostatin gene (MSTN) in four goat breeds and their effects on Boer goat growth performance. Mol. Biol. Rep. 39:3081-3087. https://doi.org/10.1007/s11033-011-1071-0
  25. Zhang, G. W., H. Z. Wang, S. Y. Chen, Z. C. Li, W. X. Zhang and S. J. Lai. 2011. A reduced incidence of digestive disorders in rabbits is associated with allelic diversity at the TLR4 locus. Vet. Immunol. Immunopathol. 144:482-486. https://doi.org/10.1016/j.vetimm.2011.08.009