DOI QR코드

DOI QR Code

Exploration of Submarine Spring Along the Coastal Areas of Busan Metropolitan City

부산 인근 연안해역에서 해저 용천수 유출 탐사

  • Lee, Yong-Woo (Department of Oceanography, Pusan National University) ;
  • Khim, Boo-Keun (Department of Oceanography, Pusan National University) ;
  • Kim, Sunghan (Department of Oceanography, Pusan National University)
  • Received : 2013.05.14
  • Accepted : 2013.11.13
  • Published : 2013.11.28

Abstract

We measured salinity and $^{222}Rn$ concentration to explore submarine spring along the coastal areas (Mundongri, Icheon-ri, Jukseong-ri, Daebyeon-ri, Yeonhwa-ri, and Dadae-po) including Ilkwang Bay of Busan Metropolitan City in 2009 and 2010. Before field observation, we selected the potential and possible locations of submarine spring based on the lineament distribution and rose diagram analysis. Salinity and radon concentration were measured within the 1~2 km from the coastal lines. Radon activity decreased gradually from onshore to offshore. Vertical profiles of salinity at some stations showed lateral transport of water mass characterized by low salinity. Vertical profiles of salinity in the Ilkwang Bay, which is a unique bay in the south-eastern coastal area of Busan Metropolitan City, also showed the occurrence of low salinity in the bottom seawater. Our results suggest the possible occurrence of submarine discharge of fresh groundwater in the coastal areas around Busan Metropolitan City. In the future, intensive research should be conducted for the exploration methods of submarine spring as well for the possible utility of submarine groundwater as alternative water resources.

해수의 염분 및 라돈($^{222}Rn$) 추적자를 이용하여 부산 인근의 동부와 남부 연안해역(문동리, 이천리, 죽성리, 대변리, 연화리, 다대포) 그리고 일광만 내에서 2009년과 2010년에 해저 용천수 유출 가능성을 조사하였다. 해양조사 전에 기본적으로 육상으로부터 해양으로 연장된 선구조 분석을 통하여 해저 용천수의 유출 유망지점을 선정하였다. 선정된 지점들을 포함하여 해안에서 바다쪽으로 약 1~2 km 이내에서 해수의 염분과 라돈을 측정하였다. 부산 인근의 동부 및 남부 연안해역에서 라돈 농도는 연안에서 외양쪽으로 갈수록 낮아지는 경향을 보였다. 또한, 염분의 수직분포에서는 일부 정점의 중간 수층에서 낮은 염분을 가진 수괴의 수평 유입이 관측되었다. 부산 인근의 동부 연안해역에서 유일한 만의 형태를 보이는 일광만 내에서 측정한 염분 수직분포에서도 저층에서 낮은 염분의 수괴가 출현하였다. 이번 조사에서 나타난 연구결과는 부산 인근 연안해역에서 해저 용천수 형태의 담지하수 유출 가능성을 시사하며, 앞으로 해저 용천수 탐사 방법과 미래의 대체 수자원으로서 활용 가능성에 대한 집중적인 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Burnett, W.C., H. Bokuniewicz, M. Huettel, W.S. Moore and M. Taniguchi, 2003a. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66: 3-33. https://doi.org/10.1023/B:BIOG.0000006066.21240.53
  2. Burnett, W.C., J.E. Cable and D.R. Corbett, 2003b. Radon tracing of submarine groundwater discharge in coastal environments. In: M. Taniguchi, K. Wang and T. Gamo (Editors), Land and Marine Hydrogeology, Elsevier, pp. 25-43.
  3. Burnett, W.C., G. Kim and D. Lane-Smith, 2001. A continuous monitor for assessment of $^{226}Rn$ in coastal ocean waters. J. Radioanal. Nucl. Chem., 249: 167-172. https://doi.org/10.1023/A:1013217821419
  4. Calvino, F. and A. Stefanon, 1969. The submarine springs of fresh water and the problems of their capture. Rapp. P-V Reun., Commis. Int. Explor. Sci. Mer Mediterr. Monaco, 19: 609-610.
  5. Gould, J. and E. Nissen-Petersen, 1999. Rainwater catchment systems for domestic supply: design, construction and implementation. I. T. Publications, London.
  6. Gwak, Y.S., S.H. Kim, Y.W. Lee, S.Y. Hamm, I.S. Kim and B.K. Khim, 2011. Estimation of submarine groundwater discharge in Il-Gwang watershed using water budget analysis and Rn mass balance. J. Environ. Sci., 20: 1165-1182.
  7. Hwang, D.W., G. Kim and J.Y. Lee, 2010. Submarine discharge of fresh groundwater through the coastal area of Korea Peninsula: Importance as a future water resource. J. Korean Soc. Oceanogr., 15: 192-202.
  8. Jacob, N., D.S.S. Babu and K. Shivanna, 2009. Radon as an indicator of submarine groundwater discharge in coastal regions. Current Science, 97: 1313-1320.
  9. Kim, J.T., I.M. Chung, N.W. Kim and G.C. Jeong, 2009. An analysis of construction trends and effects of groundwater dam. Korean National Committee on Irrigation and Drainage, 16: 83-91.
  10. Kim, H. and S. Kim, 2001. A study on groundwaters being discharged into East Sea along the shoreline of southern Korean Peninsula. J. Korean Geophy. Soc., 4: 71−84.
  11. Kim, S.W., I.S. Kim, S.Y. Hamm, S.H. Kim, B.K. Khim and Y.K. Seo, 2012. Estimation of submarine groundwater discharge along the East coastal region of Busan City, Korea: 2. Submarine electrical resistivity and high resolution seismic survey. J. Geol. Soc. Korea, 48: 411-424.
  12. Kim, G., J.W. Ryu and D.W. Hwang, 2008. Radium tracing of submarine groundwater discharge (SGD) and associated nutrient fluxes in a highly-permeable bed coastal zone, Korea. Mar. Chem., 109: 307-317. https://doi.org/10.1016/j.marchem.2007.07.002
  13. Kindinger, J.L., J.B. Davis and J.G. Flocks, 2000. Subsurface characterization of selected water bodies in the St. Johns river water management district, Northeast Florida: US Geological Survey Open-File Report 00-180, 46p.
  14. Kohout, F.A., 1966. Submarine springs: a neglected phenomenon of coastal hydrology. J. Hydrol., 26: 391-413.
  15. Lee, J.M. and G. Kim, 2006. A simple and rapid method for analyzing radon in coastal and ground waters using a radon-in-air monitor. J. Environ. Radioact., 89: 219-228. https://doi.org/10.1016/j.jenvrad.2006.05.006
  16. Lee, J.M. and G. Kim, 2007. Estimating submarine discharge of fresh groundwater from a volcanic island using a freshwater budget of the coastal water column. Geophys. Res. Lett., 34: L11611, doi:10.1029/2007GL029818.
  17. MCT, 2001. Water vision 2020. Ministry of Construction & Transportation.
  18. Moore, W.S., 1996. Large groundwater inputs to coastal waters revealed by $^{226}Ra$ enrichments. Nature, 380: 612-614. https://doi.org/10.1038/380612a0
  19. Moore, W.S., J.L. Sarmiento and R.M. Key, 2008. Submarine groundwater discharge revealed by $^{226}Ra$ distribution in the upper Atlantic Ocean. Nature Geoscience, 1: 309-311. https://doi.org/10.1038/ngeo183
  20. Moore, W.S. and J. Shaw, 1998. Chemical signals from submarine fluid advection onto the continental shelf. J. Geophys. Res., 103: 21543-21552. https://doi.org/10.1029/98JC02232
  21. Ok, S.I., S.Y. Hamm, Y.W. Lee, E.J. Cha, S.H. Kim, I.S. Kim and B.K. Khim, 2011. Characterizing groundwater discharge and radon concentration in coastal waters, Busan City. J. Soil & Groundwater Env., 16: 53-66.
  22. Park, W.B., D.C. Moon and G.W. Koh, 2012. A study on efficient improvement method of rainwater utilization facilities in Jeju island. J. Soil & Groundwater Env., 17: 1-8.
  23. Taniguchi, M., W.C. Burnett, J.E. Cable and J.V. Turner, 2002. Investigation of submarine groundwater discharge. Hydrological Processes, 16: 2115-2129. https://doi.org/10.1002/hyp.1145
  24. UNESCO, 2004. Submarine groundwater discharge. Management implications, measurements and effects. IHP-VI, Series on groundwater No. 5. IOC manuals and guides No. 44. By Scientific committee on oceanic research (SCOR) and Land-Ocean Interactions in the Coastal Zone (LOICZ).
  25. Zektzer, I.S., V.A. Ivanov and A.V. Meskheteli, 1973. The problem of direct groundwater discharge to the seas. J. Hydrol., 20: 1-36. https://doi.org/10.1016/0022-1694(73)90042-5