DOI QR코드

DOI QR Code

Growth Promotion and Induction of Systemic Resistance Against Phytophthora capsici on Red-pepper Plant by Treatment of Trichoderma harzianum MPA167

근권 Trichoderma harzianum MPA167 처리에 의한 생육촉진과 고추 역병균에 대한 고추의 유도저항성

  • Yang, Nuri (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Sae Won (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Heung Tae (Department of Plant Medicine, Chungbuk National University) ;
  • Park, Kyungseok (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
  • 양누리 (국립농업과학원 농업미생물과) ;
  • 이세원 (국립농업과학원 농업미생물과) ;
  • 김흥태 (충북대학교 식물의학과) ;
  • 박경석 (국립농업과학원 농업미생물과)
  • Received : 2013.11.22
  • Accepted : 2013.12.16
  • Published : 2013.12.31

Abstract

Trichoderma harzianum is one of rhizosphere fungus usually lives near the plant root regions in the soil. T. harzianum plays an important role in plant growth promotion and increases disease resistance against various plant pathogens on crops. In this study, the strain T. harzianum MPA167 was isolated from the barley rhizosphere soil in Suwon, Korea. Among 183 isolates, the strain T. harzianum MPA167 was selected as promising strain in which based on hyperparasitical activity against Phytophthora capsici and estimated disease control activity against P. capsici in the greenhouse conditions. The strain T. harzianum MPA167 was identified using 23s rDNA internal transcribed spacer(ITS) region sequences. MPA167 treatment ($1{\times}10^6$ spores/ml) showed greater disease suppression against Phytophthora blight of red-pepper caused by P. capsici in greenhouse compared with the water-treated control. Volatiles derived from T. harzianum MPA167 elicit growth promotion of tobacco and Arabidopsis seedlings in I-plate assay. In addition, T. harzianum MPA167 strain was also found to be effective for the growth promotion and induction of systemic resistance on red-papper plant. These results suggest that MPA167 might be used as one of the potential biocontrol agents.

Trichoderma harzianum 은 식물의 뿌리주변에 살아가는 근권미생물 중의 하나로 여러 가지 식물에 생육을 촉진하며 식물의 병저항성을 증강시킨다. 본 연구로부터 선발된 T. harzianum MPA167은 보리의 근권 등으로부터 분리된 183종의 트라이코데르마 균주로부터 선발되었으며 고추역병균인 Phytophthora capsici에 대한 억제효과가 우수함을 구명하였다. T. harzianum MPA167균주는 23s rDNA ITS sequences 분석 결과 T. harzianum 으로 동정하였다. 본 균주($1{\times}10^6$ spores/ml)의 처리는 고추역병의 방제에 가장 효과적이었으며 이 균주가 생산하는 휘발성 생육촉진물질은 담배 및 애기장대 식물의 생육을 크게 증가 시켰다. 또한 본 균주의 처리로 고추의 생육촉진과 유도저항성이 발현되었다. 이와 같은 결과로 보아 본 선발 균주인 T. harzianum MPA167는 작물의 생육촉진과 생물방제를 위한 친환경 농자재로의 활용이 가능 할것으로 생각된다.

Keywords

References

  1. Ahmed, A. S., C. P Sanchez C. Egea and M. E. Candela (1999) Evaluation of Trichoderma harzianum for controlling root rot caused by Phytophthora capsici in pepper plants, Plant Pathology 48:58-5. https://doi.org/10.1046/j.1365-3059.1999.00317.x
  2. Ahmed, A. S., C. P. Sanchez and M. E. Candela (2000) Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation, European Journal of Plant Pathology 106:817-24. https://doi.org/10.1023/A:1008780022925
  3. Bae, H. H., D. P. Roberts, H. S. Lim, M. D. Strem, S. C. Park, C. M. Ryu, R. L. Melnick and B. A. Bailey (2011) Endophytic Trichoderma Isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in Hot Pepper Using Multiple mechanisms, The American Phytopathological Society 24(3):336-351.
  4. Beagle, R. J. and G. C. Papavizas (1984) Reduction of Rhizoctonia solani in soil with fermenter preparations of Trichoderma and Gliocladium, Phytopathology 74:836.
  5. Chi, T. T. P., O. Choi, Y. S. Kwak, D. Y. Son, J. J. Lee and J. W. Kim (2013) Streptomyces padanus for the Biological Control of Phytophthora capsici on Pepper Plants, Journal of Agriculture & Life Science 47:1-9. https://doi.org/10.14397/jals.2013.47.6.1
  6. Druzhinina, I. S., A. G. Kopchinskiy, M. Komoj, J. Bissett, G. Szakacs and C. P. Kubicek (2005) An oligonucleotide barcode for species identifcation in Trichoderma and Hypocrea, Fungal Genetics and Biology 42:813-828. https://doi.org/10.1016/j.fgb.2005.06.007
  7. Erwin, D. C. and O. K. Ribeiro (1996) Phytophthora diseases worldwide, pp. 262-268, Department of Plant Pathology, University of California, Riverside, USA.
  8. Francesco, V., K. Sivasithamparam, E. L. Ghisalbertic, R. Marra, S. L. Woo and M. Lorito (2008) Trichoderma-lantathogen interactions, Soil Biology and Biochemistry 40:1-10. https://doi.org/10.1016/j.soilbio.2007.07.002
  9. Hadar Y., G. E. Harman and A. G. Taylor, (1984) Evaluation of Trichoderma koningii and T. harzianum from New York soils for biological control of seed rot caused by Pythium spp. Phytopathology 74:106-110. https://doi.org/10.1094/Phyto-74-106
  10. Hanada, R. E., T. J. Souza, A. W. V. Pomella, K. P. Hebbar, J. O. Pereira, A. Ismaiel and G. J. Samuels (2008) Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control, Mycol. Res. 112:1335-1343. https://doi.org/10.1016/j.mycres.2008.06.022
  11. Harman, G. E., C. R. Howell, A. Viterbo, I. Chet and M. Lorito (2004) Trichoderma species-opportunistic, avirulent plant symbionts, Nature Review Microbiology 2:43-56. https://doi.org/10.1038/nrmicro797
  12. Holmes, K. A., H. Schroers, S. E. Thomas, H. C. Evans and G. J. Samuels (2004) Taxonomy and biocontrol potential of a new species of Trichoderma from the Amazon basin of South America, Mycol. Prog. 3:199-210. https://doi.org/10.1007/s11557-006-0090-z
  13. Hwang, B. K. and C. H. Kim (1995) Phytophthora blight of pepper and its control in Korea, Plant Dis. 79:221-227. https://doi.org/10.1094/PD-79-0221
  14. Jee, H. J., W. D. Cho and C. H. Kim (2000) Phytophthora disease in Korea, RDA. 226.
  15. Lamour, K. H., R. Stam, J. Jupe and E. Huitema (2012) The oomycete broad-host-range pathogen Phytophthora capsici, Molecular plant pathology 13(4):329-337. https://doi.org/10.1111/j.1364-3703.2011.00754.x
  16. Lee, S. H., Y. E. Cho, S. H. Park, B. Kotnala, J. W. Park, S. W. Lee and K. S. Park (2013) An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of redpepper, Phytoparasitica 41:49-58. https://doi.org/10.1007/s12600-012-0263-z
  17. Meyer, G. D., J. Bigirimana, Y. Elad and M. Hofte (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea, European Journal of Plant Pathology 104:279-286. https://doi.org/10.1023/A:1008628806616
  18. Parizi, T. E., M. Ansari and T. Elaminejad (2012) Evaluation of the potential of Trichoderma viride in the control of fungal pathogens of Roselle (Hibiscus sabdariffa L.) in vitro, Microbial Pathogenesis 52:201-205. https://doi.org/10.1016/j.micpath.2012.01.001
  19. Persoon, C. H. (1794) Dispositio methodica fungorum, Neues Magazin fur die Botanik 1:81-128.
  20. Ploetz, R., R. J. Schnell, and J. Haynes (2002) Variable response of open-pollinated seedling progeny of avocado to Phytophthora root rot. Phytoparasitica, 30, 262-268. https://doi.org/10.1007/BF03039994
  21. M., J. D. Jarana and T. Benitez (2001) Improved antifungal activity of a mutant of Trichoderma harzianum CECT 2413 which produces more extracellular proteins, Appl Microbiol Biotechnol 55:604-608. https://doi.org/10.1007/s002530000551
  22. Ryu, C. M., M. A. Farag, C. H. Hu, M. S. Reddy, H. X. Wei, P. W. Paree and J. W. Kloepper (2003) Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100:4927-4932. https://doi.org/10.1073/pnas.0730845100
  23. Samuels, G. J., R. A. Pardo-Schultheiss, K. P. Hebbar, R. D. Lumsden, C. N. Bastos, J. C. Costa and J. L. Bezerra (2000) Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen, Mycological Research 104:760-764. https://doi.org/10.1017/S0953756299001938
  24. Samuels, G. J., S. L. Dodd, B-S. Lu, O. Petrini, H. J. Schroers and I. S. Druzhinina, (2006a) The Trichoderma koningii aggregate species, Studies in Mycology 56:67-133. https://doi.org/10.3114/sim.2006.56.03
  25. Samuels, G. J., C. Suarez, K. Solis, K. A. Holmes, S. E. Thomas, A. A. Ismaiel and H. C. Evans (2006b) Trichoderma theobromicola and T. paucisporum: two new species from South America. Mycological Research 110:381-392. https://doi.org/10.1016/j.mycres.2006.01.009
  26. Samuels, G. J. and A. Ismaiel (2009) Trichoderma evansii and T. lieckfeldtiae two new T. hamatum-like species, Mycologia 101:142-156. https://doi.org/10.3852/08-161
  27. Williams, J., J. M. Clarkson, P. R. Mills and R. M. Cooper (2003) A Selective Medium for Quantitative Reisolation of Trichoderma harzianum from Agaricus bisporus Compost, Appled and Environmental Microbiology 69:4190-4191. https://doi.org/10.1128/AEM.69.7.4190-4191.2003
  28. Yamagiwa, Y., Y. Inagaki, Y. Ichinose, K. Toyoda, M. Hyakumachi and T. Shiraishi (2011) Talaromyces wortmannii FS2 emits $\beta$-caryophyllene, which promotes plant growth and induces resistnace, J. Gen. Plant Pathol. 77:336-341.
  29. Zhang, S., T. L. White, M. C. Martinez, J. A. McInroy, J. W. Kloepper and W. Klassen (2010) Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions, Biological Control 53:129-135. https://doi.org/10.1016/j.biocontrol.2009.10.015

Cited by

  1. Trichoderma 종 미생물비료 시비에 따른 Creeping bentgrass 생육 및 품질 향상 vol.4, pp.3, 2013, https://doi.org/10.5660/wts.2015.4.3.249
  2. Trichoderma 수집균주별 오이 덩굴쪼김병 방제효과 vol.28, pp.3, 2013, https://doi.org/10.5322/jesi.2019.28.3.385