DOI QR코드

DOI QR Code

A Study on the Prediction of Elastoplastic Behavior of Carbon Nanotube/Polymer Composites

계면 결합력과 나노튜브의 응집에 따른 나노튜브/고분자 복합재의 탄소성 거동 예측에 대한 연구

  • Yang, Seunghwa (Department of Mechanical Engineering, Dong-A University) ;
  • Yu, Suyoung (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Ryu, Junghyun (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Cho, Maenghyo (School of Mechanical and Aerospace Engineering, Seoul National University)
  • 양승화 (동아대학교 기계공학과) ;
  • 유수영 (서울대학교 기계항공공학부) ;
  • 류정현 (서울대학교 기계항공공학부) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • Received : 2013.10.28
  • Accepted : 2013.11.20
  • Published : 2013.12.31

Abstract

In this research, a paramteric study to account for the effect of interfacial strength and nanotube agglomeration on the elastoplastic behavior of carbon nanotube reinforced polypropylene composites is performed. At first, the elastoplastic behavior of nanocomposites is predicted from molecular dynamics(MD) simulations. By combining the MD simulation results with the nonlinear micromechanics model based on the Mori-Tanaka model, a two-step domain decomposition method is applied to inversely identify the elastoplastic behavior of adsorption interphase zone inside nanocomposites. In nonlinear micromechanics model, the secant moduli method combined with field fluctuation method is used to predict the elastoplastic behavior of nanocomposites. To account for the imperfect material interface between nanotube and matrix polymer, displacement discontinuity condition is applied to the micromechanics model. Using the elastoplastic behavior of the adsorption interphase zone obtained from the present study, stress-strain relation of nanocomposites at various interfacial bonding condition and local nanotube agglomeration is predicted from nonlinear micromechanics model with and without the adsorption interphase zone. As a result, it has been found that local nanotube agglomeration is the most important design factor to maximize reinforcing effect of nanotube in elastic and plastic behavior.

본 연구에서는 탄소나노튜브와 폴리프로필렌 기지 간 계면결합력과 나노튜브의 국부적 응집에 따른 나노복합재의 탄소성 거동 변화에 대한 파라메트릭 연구를 수행한다. 나노복합재의 탄소성 거동 예측을 위해 분자동역학 전산모사를 수행하고, 분자동역학 결과와 Mori-Tanaka 모델을 적용한 비선형 미시역학 모델을 연계하여 나노복합재 내 흡착계면의 탄소성 거동을 역으로 도출하는 2단계 영역분할 기법을 적용하였다. 미시역학 모델에서는 시컨트 계수방법을 Mori-Tanaka 모델에 적용하여 나노복합재의 비선형 거동을 예측하는 방법을 적용하였으며, 나노튜브와 기지 간 재료계면의 불완전 결합을 고려하기 위해 변위 불연속 조건을 적용하였다. 흡착영역을 고려한 미시역학 모델을 통해 흡착계면의 유무 및 재료계면 결합력 변화 그리고 나노튜브의 국부적 응집현상에 따른 나노복합재의 응력-변형률 관계를 예측하였다. 그 결과 나노튜브의 국부적 응집이 나노복합재의 강화효과를 저하시키는 가장 중요한 변수임을 확인하였다.

Keywords

References

  1. Ajayan, P.M., Stephano, O., Colliex, C., Trauth, D. (1994) Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composites, Science, 265, pp.1212-1214. https://doi.org/10.1126/science.265.5176.1212
  2. Barai, P., Weng, G.J. (2011) A Theory of Plasticity for Carbon Nanotube Reinforced Composites, International Journal of Plasticity, 27, pp.539-559. https://doi.org/10.1016/j.ijplas.2010.08.006
  3. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., Shulte, K. (2004) Carbon Nanotube-reinforced Epoxy-composites:Enhanced Stiffness and Fracture Toughness at Low Nanotube Content, Composites Science and Technology, 64, pp.2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002
  4. Hu, G.K. (1996) A method of Plasticity for General Aligned Spheroidal Void or Fiber-reinforced Composites, International Journal of Plasticity, 12, pp.439-449. https://doi.org/10.1016/S0749-6419(96)00015-0
  5. Hill, R. (1965) Continuum Micro-mechanics of Elastoplastic Polycrystals, Journal of Mechanics and Physics of Solids, 13, pp.89-101. https://doi.org/10.1016/0022-5096(65)90023-2
  6. Katharina, M., Beate, K., Regine, B., Bernd, K., Roland, W., Betra, Potschke. (2011) Percolation Behaviour of Multiwalled CArbon Nanotubes of Altered Length and Primary Agglomerate Morphology in Melt Mixed Isotactic Polypropylene-based Composites, Composites Science and Technology, 71, pp.1936-1943. https://doi.org/10.1016/j.compscitech.2011.09.009
  7. Mori, T., Tanaka, K. (1973) Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions, Acta Metallurgica, 21, pp.571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  8. Qian, D., Dickey, D.C., Andrews, R., Rantell, T. (2000) Load Transfer and Deformation Mechanisms in Carbon Nanotube-polystyrene composites, Applied Physics Letters, 20, pp.2868-2870.
  9. Qu, J. (1993) Eshelby Tensor for Elastic Inclusion with Slightly Weakened Interface, Journal of Applied Mechanics, 60, pp.1048-1050. https://doi.org/10.1115/1.2900974
  10. Qui, Y.P., Weng, G.J. (1992) Theory of Plasticity for Porous Materials and Particle-reinforced Composites, Journal of Applied Mechanics, 59, pp.261-268. https://doi.org/10.1115/1.2899515
  11. Thostenson, E.T., Li, C., Chou, T.W. (2005) Nanocomposites in Context, Composites Science and Technology, 65, pp.491-516. https://doi.org/10.1016/j.compscitech.2004.11.003
  12. Yanase, K., Moriyama, S., Ju, J.W. (2013) Effects of CNT Waviness on the Effective Elastic Responses of CNT-reinforced Polymer Composites, Acta Mechanica, 224, pp.1351-1364. https://doi.org/10.1007/s00707-013-0808-3
  13. Yang, S., Yu, S., Cho, M. (2009) A Study on the Developmenht of Multiscale Bridging Method Considering the Particle Size and Concentration Effect of Nanocomposites, Journal of the Computational Structural Engineering Institute of Korea, 22(4), pp.343-348
  14. Yang, S., Yu, S., Kyoung, W., Han, D.S., Cho, M. (2012) Multiscale Modeling of Size-dependent Elastic Properties of Carbon Nanotube/polymer Nanocomposites with Interfacial Imperfections, Polymer, 53, pp.623-633. https://doi.org/10.1016/j.polymer.2011.11.052
  15. Yang, S., Yu, S., Ryu, J., Cho, J., Kyoung, W., Han, D., Cho, M. (2013) Nonlinear Multiscale Modeling Approach to Characterize Elastoplastic Behavior of CNT/polymer Nanocomposites Considering the Interphase and Interfacial Imperfection, International Journal of Plasticity, 41, pp.124-146. https://doi.org/10.1016/j.ijplas.2012.09.010

Cited by

  1. Effects of heat-treated HNTs on the mechanical properties of GFRP under moisture absorption vol.32, pp.19, 2018, https://doi.org/10.1142/S0217979218400702