DOI QR코드

DOI QR Code

플레인 요구르트와 소이 요구르트의 미생물학적, 물리화학적 및 항산화 활성

Microbiological, Physicochemical, and Antioxidant Properties of Plain Yogurt and Soy Yogurt

  • 임성미 (동명대학교 식품영양과학과)
  • Lim, Sung-Mee (Department of Food Nutrition& Science, Tongmyong University)
  • 투고 : 2013.10.14
  • 심사 : 2013.12.03
  • 발행 : 2013.12.31

초록

양배추 피클로부터 분리된 유산균으로 발효하여 제조한 플레인 요구르트와 소이 요구르트를 저장하는 동안 미생물학적 및 물리화학적 변화와 항산화 특성을 조사하였다. 분리 균주는 당분해능과 유전자 염기서열 분석을 통해 L. casei PC05와 L. acidophilus PC16으로 동정되었다. Lactobacillus acidophilus PC16 균주로 발효시킨 요구르트의 적정산도, 점도 및 균수는 L. casei PC05 균주에 의해 제조된 요구르트에 비해 높게 나타났으며, 특히 플레인 요구르트보다 소이 요구르트에서 세균수와 물리화학적 요인의 측정값이 유의하게 높은 것으로 확인되었다. 한편, L. acidophilus PC16 균주로 발효시킨 요구르트는 DPPH 라디칼 소거능과 철이온 킬레이팅 활성이 높았으나, L. casei PC05 균주의 요구르트는 superoxide anion 제거능과 SOD 활성이 높은 것으로 나타났다. 대부분의 항산화능은 플레인 요구르트보다 소이 요구르트에서 더 높게 나타났으며, 요구르트의 지질과산화 억제능은 항산화 활성에 기인하는 것으로 추정된다. 또한 발효직후 요구르트의 미생물학적, 물리화학적 및 항산화 활성은 $4^{\circ}C$에서 8일간 저장하는 동안 거의 일정한 수준으로 유지되었다.

This study evaluated the physicochemical and microbiological characteristics and antioxidant properties of yogurt samples fermented with lactic acid bacteria (LAB) obtained from pickled cabbage. API 50 CHL systems and 16S rRNA nucleotide sequence analyses revealed that the isolates were Lactobacillus casei PC05 and L. acidophilus PC16. Cell counts, titratable acidity, and viscosity of the yogurt samples fermented with L. acidophilus PC16 were significantly higher than those of the samples fermented with L. casei PC05 (P<0.05). The detected cell counts and physicochemical properties were significantly lower in plain yogurt than in soy yogurt (P<0.05). Yogurt samples fermented with L. acidophilus PC16 exhibited higher antioxidant activity, measured as ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and chelate ferrous ions, than those fermented with L. casei PC05. However, the ability to scavenge superoxide anions and superoxide dismutase (SOD) activity were significantly (P<0.05) higher in yogurt samples fermented with L. casei PC05 compared to those in samples fermented with L. acidophilus PC16. The antioxidant activity of soy yogurt was significantly (P<0.05) higher than that of plain yogurt. The antioxidant activity of the tested strains resulted in lipid peroxidation inhibition (in vitro), which may be related to the elimination of free radicals, chelating ability, and reducing power. There were no significant differences in the physicochemical properties and antioxidant activities of the yogurt samples during cold storage.

키워드

참고문헌

  1. Abubakr, M.A.S., Hassan, Z., Imdakim, M.A., and Sharifah, N.R.S.A. 2012. Antioxidant activity of lactic acid bacteria (LAB) fermented skim milk as determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferrous chelating activity (FCA). Afr. J. Microbiol. Res. 6, 6358-6364.
  2. Ahotupa, M., Saxelin, M., and Korpela, R. 1996. Antioxidative properties of Lactobacillus GG. Nutr. Today 31, 51S-52S.
  3. Archibald, F.S. and Fridovich, I. 1981. Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J. Bacteriol. 146, 928-936.
  4. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., and Kalayci, O. 2012. Oxidative stress and antioxidant defense. World Allergy Organ J. 5, 9-19. https://doi.org/10.1097/WOX.0b013e3182439613
  5. Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J.C., Gerds, M.L., Hammes, W.P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., and et al. 2012. Food fermentations: Microorganisms with technological beneficial use. Int. J. Food Microbiol. 154, 87-97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
  6. Buchmeier, N., Bossie, S., Chen, C.Y., Fang, F.C., Guiney, D., and Libby, S. 1997. Sly A, a transcriptional regulator of Salmonella typhimurium, is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages. Infect. Immun. 65, 3725-3730.
  7. Castro, L. and Freeman, B.A. 2001. Reactive oxygen species in human health and disease. Nutrition 17, 161-165. https://doi.org/10.1016/S0899-9007(00)00570-0
  8. Chougrani, F., Cheriguene, A., and Bensoltane, A. 2008. Use of lactic strains isolated from Algerian ewe's milk in the manufacture of a natural yogurt. Afr. J. Biotechnol. 7, 1181-1186.
  9. Dargel, R. 1992. Lipid peroxidation - A common pathogeneticmechanism? Exp. Toxico. Pathol. 44, 169-181. https://doi.org/10.1016/S0940-2993(11)80202-2
  10. Decker, E.A. and Welch, B. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38, 674-677. https://doi.org/10.1021/jf00093a019
  11. Ejtahed, H.S., Mohtadi-Nia, J., Homayouni-Rad, A., Niafar, M., Asghari-Jafarabadi, M., and Mofid, V. 2012. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutr. 28, 539-543. https://doi.org/10.1016/j.nut.2011.08.013
  12. Ghorbani, A., Pourahamd, R., Fallahpour, M., and Assadi, M.M. 2012. Production of probiotic soy yogurt. Annal. Biol. Res. 3, 2750-2754.
  13. Granelli, K., Bjorck, L., and Appelqvist, L.A. 1995. The variation of superoxide dismutase (SOD) and xanthine oxidase (XO) activities in milk using an improved method to quantitate SOD activity. J. Sci. Food Agric. 67, 85-91. https://doi.org/10.1002/jsfa.2740670114
  14. Halliwell, B. and Gutteridge, J.M.C. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1-4. https://doi.org/10.1042/bj2190001
  15. Halliwell, B., Gutteridge, J.M.C., and Aruoma, O. 1987. The deoxyribose method: a simple 'test tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165, 215-219. https://doi.org/10.1016/0003-2697(87)90222-3
  16. Halliwell, B., Murcia, H.A., Chirco, S., and Aruoma, O.I. 1995. Free radical and antioxidants in food an in vivo: What they do and how they work? Food Sci. Nutr. 35, 7-20.
  17. Hamann, W.T. and Marth, E.H. 1984. Survival of Streptococcus thermophilus and Lactobacillus bulgaricus in commercial and experimental yogurts. J. Food Prot. 47, 781-786. https://doi.org/10.4315/0362-028X-47.10.781
  18. Han, W. and Fioramonti, J. 2008. Anti-inflammatory properties of lactic acid bacteria producing superoxide dismutase. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G353. https://doi.org/10.1152/ajpgi.00517.2007
  19. Irkin, R. and Songun, G.E. 2012. Applications of probiotic bacteria to the vegetable pickle products. Sci. Rev. Chem. Commun. 4, 562-567.
  20. Kim, H.S., Chae, H.S., Jeong, S.G., Ham, J.S., Im, S.K., Ahn, C.N., and Lee, J.M. 2005. Antioxidant activity of some yogurt starter cultures. J. Anim. Sci. 18, 255-258. https://doi.org/10.5713/ajas.2005.255
  21. Kim, H.S., Chae, H.S., Jeong, S.G., Ham, J.S., Im, S.K., Ahn, C.N., and Lee, J.M. 2006. In vitro antioxidant properties of lactobacilli. J. Anim. Sci. 19, 262-265.
  22. Kullisaar, T., Zilmer, M., Mikelsaar, M., Vihalemn, T., Annuk, H., Kairane, C., and Kilk, A. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 72, 215-224. https://doi.org/10.1016/S0168-1605(01)00674-2
  23. Li, Z., Liu, C., Li, D., Zhao, Y., Zhang, X., Zeng, X., Yang, Z., and Li, S. 2013. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54, 270-275. https://doi.org/10.1016/j.ijbiomac.2012.12.037
  24. Li, S., Zhao, Y., Zhang, L., Zhang, X., Huang, L., Li, D., Niu, C., Yang, Z., and Wang, Q. 2012. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 135, 1914-1919. https://doi.org/10.1016/j.foodchem.2012.06.048
  25. Lin, M.Y. and Yen, C.L. 1999. Inhibition of lipid peroxidation by Lactobacillus acidophilus and Bifidobacterium longum. J. Agric. Food Chem. 47, 3661-3664. https://doi.org/10.1021/jf981235l
  26. Liu, J.R., Chen, M.J., and Lin, C.W. 2005a. Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. J. Agric. Food Chem. 53, 2467-2474. https://doi.org/10.1021/jf048934k
  27. Liu, J.R., Lin, Y.Y., Chen, M.J., Chen, L.J., and Lin, C.W. 2005b. Antioxidative activities of kefir. Asian-Aust. J. Anim. Sci. 18, 567-573. https://doi.org/10.5713/ajas.2005.567
  28. Lourens-Hattingh, A. and Viljoen, B.C. 2001. Yogurt as probiotic carrier food. Int. Dairy J. 11, 1-17. https://doi.org/10.1016/S0958-6946(01)00036-X
  29. Mital, B.K. and Steinkraus, K.H. 1974. Growth of lactic acid bacteria in soy milk. J. Food Sci. 39, 1018-1022. https://doi.org/10.1111/j.1365-2621.1974.tb07300.x
  30. Nishikimi, M., Rao, N.A., and Yagi, K. 1972. The occurrence of superoxide anion in the reaction of reduced phenzaine methosulfate and molecular oxygen. Biochem. Biophy. Res. Co. 46, 849-853. https://doi.org/10.1016/S0006-291X(72)80218-3
  31. Nishino, T., Shibahara-Sone, H., Kikuchi-Hayakawa, H., and Ishikawa, F. 2000. Transit of radical scavenging activity of milk products prepared by Maillard reaction and Lactobacillus casei strains Shirota fermentation through the hamster intestine. J. Dairy Sci. 83, 915-922. https://doi.org/10.3168/jds.S0022-0302(00)74954-X
  32. Noni, I.D., Pellegrino, L., and Masotti, F. 2004. Survey of selected chemical and microbiological characteristics of (plain or sweetened) natural yogurts from the Italian market. Lait 84, 421-433. https://doi.org/10.1051/lait:2004020
  33. Osawa, T. and Namiki, M.A. 1981. A novel type of antioxidant isolated from leaf wax of eucalyptus leaves. Agric. Biol. Chem. 45, 735-739. https://doi.org/10.1271/bbb1961.45.735
  34. Ouwehand, A.C. and Salminen, S.J. 1998. The health effects of cultured milk products with viable and non-viable bacteria. Int. Dairy J. 8, 749-758. https://doi.org/10.1016/S0958-6946(98)00114-9
  35. Oyaizu, M. 1986. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucose-amine. Jpn. J. Nutr. 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  36. Pena-Ramos, E.A. and Xiong, Y.L. 2001. Antioxidative activity of whey protein hydrolysates in a liposomal system. J. Dairy Sci. 84, 2577-2583. https://doi.org/10.3168/jds.S0022-0302(01)74711-X
  37. Peres, C.M., Peres, C., Hernandez-Mendoza, A., and Malcata, F.X. 2012. Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria-With an emphasis on table olives. Trends Food Sci. Tech. 26, 31-42. https://doi.org/10.1016/j.tifs.2012.01.006
  38. Rawson, H.L. and Marshall, V.M. 1997. Effect of 'ropy' strains of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus on rheology of stirred yogurt. Int. J. Food Sci. Technol. 32, 213-220. https://doi.org/10.1046/j.1365-2621.1997.00395.x
  39. Rivera-Espinoza, Y. and Gallardo-Navarro, Y. 2010. Non-dairy probiotic products. Food Microbiol. 27, 1-10. https://doi.org/10.1016/j.fm.2008.06.008
  40. Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T. 1992. Antioxidative properties of xanthan of the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40, 945-948. https://doi.org/10.1021/jf00018a005
  41. Sirirat, D. and Jelena, P. 2010. Bacterial inhibition and antioxidant activity of kefir produced from Thai Jasmine rice milk. Biotechnol. 9, 332-337. https://doi.org/10.3923/biotech.2010.332.337
  42. Sokolinska, D.C., Michalski, M.M., and Pikul, J. 2004. Role of the proportion of yogurt bacterial strains in milk souring and the formation of curd qualitative characteristics. Bull. Vet. Inst. Pulawy. 48, 437-441.
  43. Songisepp, E., Kals, J., Kullisaar, T., Mandar, R., Hutt, P., and Zilmer, M. 2005. Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutr. J. 4, 22-32. https://doi.org/10.1186/1475-2891-4-22
  44. Trachoo, N. 2002. Yogurt: The fermented milk. J. Sci. Technol. 24, 727-737.
  45. Vij, S., Hati, S., and Yadav, D. 2011. Biofunctionality of probiotic soy yogurt. Food Nutr. Sci. 2, 502-509. https://doi.org/10.4236/fns.2011.25073
  46. Virtanen, T., Pihlanto, A., Akkanen, S., and Korhonen, H. 2007. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J. Appl. Microbiol. 102, 106-115. https://doi.org/10.1111/j.1365-2672.2006.03072.x
  47. Wang, Y.C., Yu, R.C., and Chou, C.C. 2002. Growth and survival of bifidobacteria and lactic acid bacteria during the fermentation and storage of cultured soymilk drink. Food Microbiol. 19, 501-508. https://doi.org/10.1006/fmic.2002.0506
  48. Wang, Y.C., Yu, R.C., and Chou, C.C. 2006. Antioxidantive activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol. 23, 128-135. https://doi.org/10.1016/j.fm.2005.01.020
  49. Wu, S.C., Wang, F.J., and Pan, C.L. 2010. The comparison of antioxidative properties of seaweed oligosaccharides fermented by two lactic acid bacteria. J. Mar. Sci. Technol. 18, 537-545.
  50. Yang, J.H., Mau, J.L., Ko, P.T., and Huang, L.C. 2000. Antioxidant properties of fermented soybean broth. Food Chem. 71, 249-254. https://doi.org/10.1016/S0308-8146(00)00165-5
  51. Zhang, Y. and Li, Y. 2013. Engineering the antioxidative properties of lactic acid bacterial for improving its robustness. Curr. Opin. Biotechnol. 24, 142-147. https://doi.org/10.1016/j.copbio.2012.08.013
  52. Zhang, S., Liu, L., Su, Y., Li, H., Sun, Q., Liang, X., and Lv, J. 2011. Antioxidative activity of lactic acid bacteria in yogurt. Afr. J. Microbiol. Res. 5, 5194-5201.
  53. Zourari, A., Accolas, J.P., and Desmazeaud, M.J. 1992. Metabolism and biochemical characteristics of yogurt bacteria. A review. Lait 72, 1-34. https://doi.org/10.1051/lait:199211

피인용 문헌

  1. ProbioticBacillusspp. in Soy-Curd: Nutritional, Rheological, Sensory, and Antioxidant Properties vol.80, pp.10, 2015, https://doi.org/10.1111/1750-3841.13004
  2. In vitro and in vivo antioxidant potential of milks, yoghurts, fermented milks and cheeses: a narrative review of evidence 2018, https://doi.org/10.1017/S0954422417000191
  3. Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review vol.11, pp.5, 2013, https://doi.org/10.3390/nu11051189
  4. Influence of Lactic Acid Bacteria Fermentation on Physicochemical Properties and Antioxidant Activity of Chickpea Yam Milk vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/5523356