DOI QR코드

DOI QR Code

Establishment of Environmental Assessment using Sediment Total Organic Carbon and Macrobenthic Polychaete Community in Shellfish Farms

퇴적물 총유기탄소와 저서 다모류 군집을 이용한 패류양식장의 환경평가 기준설정

  • Cho, Yoon-Sik (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Lee, Won-Chan (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Kim, Jeong-Bae (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Hong, Sok-Jin (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Kim, Hyung-Chul (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Kim, Chung-Sook (Marine Environment Research Division, National Fisheries Research & Development Institute)
  • 조윤식 (국립수산과학원 어장환경과) ;
  • 이원찬 (국립수산과학원 어장환경과) ;
  • 김정배 (국립수산과학원 어장환경과) ;
  • 홍석진 (국립수산과학원 어장환경과) ;
  • 김형철 (국립수산과학원 어장환경과) ;
  • 김청숙 (국립수산과학원 어장환경과)
  • Received : 2013.08.14
  • Accepted : 2013.10.25
  • Published : 2013.10.31

Abstract

In this study, the seasonal field survey was conducted in Goseong Jaran Bay(22 stations), Geoje Hansan Bay(15 stations) and Jinhae Bay(18 stations). We analyzed the sediment environmental parameters(Chemical Oxygen Demand, Ignition Loss, Acid Volatile Sulfides, Total Organic Carbon) and biotic parameters of macrobenthic polychaetes(number of species, density, diversity, evenness). It had a good correlation between total organic carbon and polychaete diversity(R=0.61, P<0.01), and we made a decision them as representative environmental indices. As a result of that, regarding the criteria in the assessment of farm environment, we suggest concentrations of total organic carbon : Peak Point = 15 mg/g dry, Warning Point = 26 mg/g dry, Contaminated Point = 31 mg/g dry and polychaete diversity : ~2.6(Good), 2.6~2.1(Moderate), 2.1~1.2(Poor) and 1.2~(Bad). This could be a scientific basis to establish the environmental standards for fishery management.

본 연구에서는 패류양식장이 밀집되어 있는 고성 자란만 22개 정점, 거제 한산만 15개 정점, 진해만 18개 정점에 대하여 계절별(2월, 5월, 8월, 11월)로 퇴적물 환경인자(화학적산소요구량, 강열감량, 산휘발성황화물, 총유기탄소)와 저서 다모류 인자(출현 종 수, 서식밀도, 다양도, 균등도)에 대하여 분석하였다. 총유기탄소와 저서 다모류 다양도간의 상관계수가 0.61로 가장 높고 유의한 상관성(P<0.01)을 보여, 어장환경평가를 위한 대표인자로 설정하였다. 그 결과 두 인자간의 상관성에 의한 어장환경평가 기준 총유기탄소는 Peak Point 15 mg/g dry, Warning Point 26 mg/g dry, Contaminated Point 31 mg/g dry이었으며, 저서 다모류 다양도의 경우 H'${\geq}$2.6은 Good, 2.6>H'${\geq}$2.1은 Moderate, 2.1>H'${\geq}$1.2는 Poor, H'<1.2는 Bad로 분류되었다. 본 연구결과는 어장관리를 위한 환경기준 설정에 과학적 기여를 할 수 있을 것으로 판단된다.

Keywords

References

  1. Apitz, S. E., M. Elliott, M. Fountain and T. S. Galloway (2006), European Environmental Management: Moving to an ecosystem approach, Integrated Environmental Assessment and Management, Vol. 2, pp. 80-85. https://doi.org/10.1002/ieam.5630020114
  2. Borja, A., M. Elliott, J. Carstensen, A. S. Heiskanen and W. van de Bund(2010), Marine management - Towards an integrated implementation of the European Marine Strategy Framework and the Water Framework Directives, Marine Pollution Bulletin, Vol. 60, pp. 2175-2186. https://doi.org/10.1016/j.marpolbul.2010.09.026
  3. Borja, A., S. B. Bricker, D. M. Dauer, N. T. Demetriades, J. G. Ferreira, A. T. Forbes, P. Hutchings, X. Jia, R. Kenchington, J. C. Marques and C. Zhu(2008), Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide, Marine Pollution Bulletin, Vol. 56, pp. 1519-1537. https://doi.org/10.1016/j.marpolbul.2008.07.005
  4. Carballeira, C., J. Ramos-Gomez, M. L. Martin-Diaz, T. A. Delvalls and A. Carball(2012), Designing and intergrated enviromental monitoring plan for land-based marine fish farms located at exposed and hard bottom coastal areas, J. Environ. Monit., Vol. 14, pp. 1305-1316. https://doi.org/10.1039/c2em10839a
  5. Carletti, A. and A. S. Heiskanen(2009), Water Framework Directive intercalibration technical report, Part 3: Coastal and Transitional waters, Office for Official Publications of the European Community, p. 240.
  6. Cloern, J. E.(2001), Our evolving conceptual model of the coastal eutrophication problem, Marine Ecology Progress Series, Vol. 210, pp. 223-253. https://doi.org/10.3354/meps210223
  7. EPA(2012), National coastal condition report IV, United States Environmental Protection Agency Office of Research and Development/Office of Water, Washington, DC 20460, p. 368.
  8. JFRCA(2006), A Guide Book for the Improvement Plan in Aquaculture(instructor), Japan Fisheries Resource Conservation Association, p. 79.
  9. Keely, N. B., B. M. Forrest, C. Crawford and C. K. Macleod(2012), Exploiting salmon farm benthic enrichment gradients to evaluate the regional performance of biotic indices and environmental indicators, Ecological Indicators, Vol. 23, pp. 453-466. https://doi.org/10.1016/j.ecolind.2012.04.028
  10. McKindsey, C. W., H. Thetmeyer, T. Landry and W. Silvert(2006), Review of recent carrying capacity models for bivalve culture and recommendations for research and management, Aquaculture, Vol. 261, pp. 451-462. https://doi.org/10.1016/j.aquaculture.2006.06.044
  11. MLTM(2010), Marine environment standard methods, Ministry of land, transport and maritime affairs, p. 495.
  12. NFRDI(2002), Environmetal research of aquaculture farm 2002, National Fisheries Research & Development Institute, p. 401
  13. NFRDI(2009a), Environmetal research of aquaculture farm 2008, National Fisheries Research & Development Institute, p. 243.
  14. NFRDI(2009b), Benthos monitoring in environment conservation sea area, National Fisheries Research & Development Institute, p. 192.
  15. NFRDI(2010), Environmetal research of aquaculture farm 2009, National Fisheries Research & Development Institute, p. 443.
  16. Pielou, E. C.(1966), The measurement of diversity in different types of biological collections, T. Theoret. Biol. Vol. 13, pp. 131-144. https://doi.org/10.1016/0022-5193(66)90013-0
  17. Rho, T. K., T. S. Lee, S. R. Lee, M. S. Choi, C. Park, J. H. Lee, J. Y. Lee, and S. S. Kim(2012), Reference values and water quality assessment based on the regional environmental characteristics, The Sea Journal of the Korean Society of Oceanography, Vol. 17, pp. 45-58.
  18. Shannon, C. E. and W. Weaver(1949), The mathematical theory of communication, University of Illinois Press, Urbana, p. 117.
  19. Takashi, U.(2008), Validity of acid volatile sulfide as environmental index and experiment for fixing its standard value in aquaculture farms along the coast of Wakayama prefecture, Japan, NIPPON SUISAN GAKKAISHI, Vol. 74, pp. 402-411. https://doi.org/10.2331/suisan.74.402
  20. Tett, P., R. Gowen, D. Mills, T. Fernandes, L. Gilpin, M. Huxham, K. Kennington, P. Read, M. Service, M. Wilkinson and S. Malcom(2007), Defining and detecting undesirable disturbance in the context of Eutrophication, Marine Pollution Bulletin, Vol. 53, pp. 282-297.
  21. Yokayama, H.(2003), Environmental quality criteria for fish farms in Japan, Aquaculture, Vol. 226, pp. 45-56. https://doi.org/10.1016/S0044-8486(03)00466-6
  22. Yoon, S. P., Y. J. Kim, R. H. Jung, C. H. Moon, S. J. Hong, W. C. Lee and J. S. Park(2008), Benthic environments and macrobenthic polychaete community structure in the winter of 2005-2006 in Gamak Bay, The Sea Journal of the Korean Society of Oceanography, Vol. 13, pp. 67-82.

Cited by

  1. Physiochemical Characteristics and Heavy Metal in the Surface Sediments of Marine Shellfish Farming Waters in Anjung Bay, Korea vol.30, pp.4, 2014, https://doi.org/10.9710/kjm.2014.30.4.421
  2. Numerical simulation for dispersion of anthropogenic material near shellfish growing area in Geoje Bay vol.28, pp.3, 2016, https://doi.org/10.13000/JFMSE.2016.28.3.831
  3. Community Structure and Health Assessment of Macrobenthic Assemblages at Spring and Summer in Geoje-Hansan Bay, Southern Coast of Korea vol.22, pp.1, 2016, https://doi.org/10.7837/kosomes.2016.22.1.027
  4. Effects of finfish aquaculture on biogeochemistry and bacterial communities associated with sulfur cycles in highly sulfidic sediments vol.10, pp.1869-7534, 2018, https://doi.org/10.3354/aei00278
  5. Distributions of Organic Matter and Heavy Metals in the Surface Sediment of Jaran Bay, Korea vol.24, pp.1, 2018, https://doi.org/10.7837/kosomes.2018.24.1.078
  6. 옹진군 어장관리해역 해제 및 변경 타당성 평가 vol.50, pp.5, 2013, https://doi.org/10.5657/kfas.2017.0576
  7. 남서해연안 수산자원보호구역 표층 퇴적물 중 유기물 및 중금속 농도분포 vol.25, pp.6, 2013, https://doi.org/10.7837/kosomes.2019.25.6.666
  8. 자란만 패류양식해역의 물리환경 설명을 위한 평균체류시간 산정 vol.29, pp.3, 2013, https://doi.org/10.5322/jesi.2020.29.3.273
  9. 저층수 용존산소가 당동만 저서다모류군집 구조의 시간적 변동에 미친 영향 vol.42, pp.3, 2020, https://doi.org/10.4217/opr.2020.42.3.233
  10. Evaluating the fate of hexabromocyclododecanes in the coastal environment: Fugacity analysis using field data vol.286, pp.None, 2021, https://doi.org/10.1016/j.envpol.2021.117461