DOI QR코드

DOI QR Code

On the Determination Method of Background Aerosol Concentration

에어로졸의 배경농도 산정기법에 관한 연구

  • Heo, Junghwa (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Sang-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Yoon, Soon-Chang (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Ji-Hyoung (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Man-Hae (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Yumi (School of Earth and Environmental Sciences, Seoul National University)
  • 허정화 (서울대학교 지구환경과학부) ;
  • 김상우 (서울대학교 지구환경과학부) ;
  • 윤순창 (서울대학교 지구환경과학부) ;
  • 김지형 (서울대학교 지구환경과학부) ;
  • 김만해 (서울대학교 지구환경과학부) ;
  • 김유미 (서울대학교 지구환경과학부)
  • Received : 2013.08.12
  • Accepted : 2013.09.08
  • Published : 2013.12.31

Abstract

In this study, we estimate the background concentration of black carbon (BC) mass concentration measured at Gosan Climate Observatory from January 2008 to December 2011 by applying six methods: (1) Mean and Median (2) Trimmed mean method deployed in Interagency Monitoring of Protected Visual Environments (IMPROVE) network program (hereafter, IMPROVE method), (3) Concentration-frequency distribution analysis method, (4) Advanced Global Atmospheric Gases Experiment (AGAGE) method (hereafter, AGAGE method), (5) Kaufman et al. (2001) method (hereafter, Kaufman method), and (6) Airmass sector analysis. The background concentration of BC mass concentrations is estimated to be about 400~900 ng $m^{-3}$, but each method shows a large difference. The estimated background concentration, in general, is arranged in the order of: mean > IMPROVE method > median > Kaufman method > concentration-frequency distribution analysis method > AGAGE method. The background concentration estimated by the airmass sector analysis is found to be about 550 ng $m^{-3}$ which is lower than those estimated by other methods. When we apply the same analytical period (i.e., 4-day and 6-day) to both AGAGE and Kaufman methods, the estimated background concentrations are quite similar. However, further researches on the development of statistical method for estimating background concentration for various gas-phase and particulate pollutants under different environment are needed.

Keywords

References

  1. Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley Jr., J. E. Hansen, and D. J. Hoffman, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423-430, doi:10.1126/science.255.5043.423.
  2. Draxler, R. R., and G. D. Rolph, 2003: HYSPLIT (HYbrid SingleParticle Lagrangian Integrated Trajectory). Model access via NOAA ARL READY Website http://www.arl.noaa.-gov/ready/hysplit4.html, NOAA Air Resources Laboratory, Silver Spring, MD.
  3. Hansen, A. D. A., H. Rosen, and T. Novakov, 1984: The aethalometer: An instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ., 36, 191-196. https://doi.org/10.1016/0048-9697(84)90265-1
  4. Hansen, A. D. A., 2003: The Aethalometer, Manual, Magee Scientific, Berkeley, California, USA.
  5. Hidy, G. M., and C. L. Blanchard, 2005: The midlatitude North American background aerosol and global aerosol variation. J. Air & Waste Manage. Assoc, 55, 1585-1599. https://doi.org/10.1080/10473289.2005.10464761
  6. Jaffe, D., S. Tamura, and J. Harris, 2005: Seasonal cycle and composition of background fine particles along the west coast of the U.S. Atmos. Environ., 39, 297-306. https://doi.org/10.1016/j.atmosenv.2004.09.016
  7. Kaufman, Y. J., A. Smirnov, B. N. Holben, and O. Dubovik, 2001: Baseline maritime aerosol: Methodology to derive the optical thickness and scattering properties. Geophys. Res. Lett., 28, 3251-3254. https://doi.org/10.1029/2001GL013312
  8. Kim, Y., S.-C. Yoon, S.-W. Kim, K.-Y. Kim, H.-C. Lim, and J. Ryu, 2013: Observation of new particle formation and growth events in Asian continental outflow. Atmos. Environ., 64, 160-168. https://doi.org/10.1016/j.atmosenv.2012.09.057
  9. McDonald-Buller, E. C., and Coauthors, 2011: Establishing policy relevant background (PRB) ozone concentrations in the united states. Environ. Sci. Technol., 45, 9484-9497. https://doi.org/10.1021/es2022818
  10. NIER (National Institute of Environmental Research), 2010: Assessment of background aerosol density distribution and characteristics of long-range transport for utilization of Baek-Ryeong-Do observatory data, final report, pp 105.
  11. O'Doherty, S., and Coauthors, 2001: In situ chloroform measurements at Advanced Global Atmospheric Gases Experiment atmospheric research stations from 1994 to 1998. J. Geophys. Res., 106, 20429-20444. https://doi.org/10.1029/2000JD900792
  12. Qu, W. J., X. Y. Zhang, R. Arimoto, D. Wang, Y. Q. Wang, L. W. Yan, and Y. Li, 2008: Chemical composition of the background aerosol at two sites in southwestern and northwestern China: potential inuences of regional transport. Tellus, 60B, 657-673.
  13. Smirnov, A., B. N. Holben, Y. Kaufman, O. Dubovik, T. Eck, I. Slutsker, C. Pietras, and R. Halthore, 2002: Optical properties of atmospheric aerosol in maritime environments. J. Atmos. Sci., 59, 501-523. https://doi.org/10.1175/1520-0469(2002)059<0501:OPOAAI>2.0.CO;2