DOI QR코드

DOI QR Code

Acrylic Polyol 함량을 달리한 폴리우레탄 제품의 형태학적 열적 및 동적·기계적 성질

Morphological, Thermal and Dynamic Mechanical Properties of Polyurethane Product with Various Contents of Acrylic Polyol

  • 김태성 (태광산업(주) 중앙연구소) ;
  • 박찬영 (부경대학교 고분자공학과)
  • 투고 : 2013.10.11
  • 심사 : 2013.10.31
  • 발행 : 2013.12.31

초록

acrylic polyol로 개질한 polyester형 polyurethane foam을 quasi prepolymer법으로 제조하였다. 열적 및 동적 기계적 성질은 thermal gravimetric analysis 및 dynamic mechanical analysis에 의하여 분석하였다. 또한 유리전이온도는 differential scanning calorimeter로 측정하였다. Acrylic polyol 함량이 증가함에 따라 TGA에 의해 측정한 열적 안정성은 약간 감소하였다. 그리고 acrylic polyol 함량이 증가함에 따라 저장 탄성률은 증가한 반면에 tan delta 값은 감소하였다.

Polyester type polyurethane foam modified with acrylic polyol was prepared by quasi prepolymer method. Thermal and dynamic mechanical properties of polyurethane foam were analysed by thermal gravimetric analysis(TGA) and dynamic mechanical analysis(DMA). Also, glass transition temperature was measured by differential scanning calorimeter(DSC). As acrylic polyol contents were increased, thermal stability measured by TGA was slightly decreased. Storage modulus was increased and tan delta was decreased with increasing of acrylic polyol contents.

키워드

참고문헌

  1. C. Ligourea, M. Cloitrea, C. Chateliera, F. Montia, "Making polyurethane foams from microemulsions", Polymer, 46, 6402 (2005). https://doi.org/10.1016/j.polymer.2005.04.089
  2. M. Saha, M. Kabir, S. Jeelani, "Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles", Mat. Sci. Eng. A, 479, 213 (2008). https://doi.org/10.1016/j.msea.2007.06.060
  3. L. Artavia, C. Macosko., Low density cellular plastics, physical basis of behavior. In: Hilyard NC, Cunningham A, editors. London: Chapman and Hall [Chapter 2].
  4. M. Modesti, A. Lorenzetti, "An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate-polyurethane foams", Eur. Polym. J., 37, 949 (2001). https://doi.org/10.1016/S0014-3057(00)00209-3
  5. G. Wood, "The ICI Polyurethanes book", 2nd ed., John Wiley& Sons, New York(1990).
  6. G. Oertel, Polyurethane foams. Munich: Hanser Publishing; (1993).
  7. M. Sonnenschein, R. Prange and, A. Schrock, "Mechanism for compression set of TDI polyurethane foams", Polymer, 48, 616 (2001).
  8. X. Caoa, L. Leea, T. Widyab, C. Macoskob, "Polyurethane/clay nanocomposites foams: processing, structure and properties", Polymer, 46, 775 (2005). https://doi.org/10.1016/j.polymer.2004.11.028
  9. X. Gao, B. Zhou, Y. Guo, Y. Zhu, X. Chen, Y. Zheng, W. Gao, X. Ma and Z. Wang, "Synthesis and characterization of well-dispersed polyurethane/$CaCO_3$ nanocomposites", Colloid. Surf. A: Physicochem. Eng. Aspects, 371, 1 (2010). https://doi.org/10.1016/j.colsurfa.2010.08.036
  10. Q. Zhanga, Y. Shib, X. Zhana and F. Chena, "In situ miniemulsion polymerization for waterborne polyurethanes: Kinetics and modeling of interfacial hydrolysis of isocyanate", Colloid. Surf. A: Physicochem. Eng. Aspects, 393, 17 (2012). https://doi.org/10.1016/j.colsurfa.2011.10.016
  11. Y. Qian, W. Liu, Y. T. Park and C. Lindsay, "Modification with tertiary amine catalysts improves vermiculite dispersion in polyurethane via in situ intercalative polymerization", Polymer, 53, 5060 (2012). https://doi.org/10.1016/j.polymer.2012.09.008
  12. S. N. Singh, Blowing agents for polyurethane foams. Shropshire, Midlands, UK: Rapra Technology; (2002).
  13. F. Michel, L. Chazeau, J. Cavaille, E. Chabert, "Mechanical properties of high density polyurethane foams: I. Effect of the density", Comp. Sci. Technol., 66, 2700 (2006). https://doi.org/10.1016/j.compscitech.2006.03.009
  14. E. Pellizzi, A. Derieux, J. Lacaillerie, B. Lavedrine, H. Cheradame, "Reinforcement properties of 3-aminopropylmethyldiethoxysilane and N-(2-Aminoethyl)-3-aminopropylmethyldimethoxysilane on polyurethane ester foam", Polym. Degrad. Stab., 97, 2340 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.07.031
  15. R. M. Herrington, Turner RB. In: Frisch KC, Klempner D, editors. Advances in urethane science and technology, vol. 12. Lancaster, PA: Technomic Pub; (1992).
  16. M. Corcuera, L. Rueda, B. d'Arlas, A. Arbelaiz, C. Marieta, I. Mondragon, and A. Eceiza, "Microstructure and properties of polyurethanes derived from castor oil", Polym. Degrad. Stab., 95, 2175 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.03.001
  17. Lovering E. G. and Laidler K. J. "Thermochemical Studies of Some Alcohol-Isocyanate Reaction, Can. J. Chem, 40, 26 (1962). https://doi.org/10.1139/v62-005
  18. L. J. Gibson, Ashby MF. Cellular solids: structure and properties. Cambridge: Cambridge University Press; (1999).
  19. M. Elwell and A. Ryan, "An FTIR study of reaction kinetics and structure development in model flexible polyurethane foam systems", Polymer, 37(8), 1353 (1996). https://doi.org/10.1016/0032-3861(96)81132-3
  20. B. D. Kaushiva, S. R. McCartney, G. R. Rossmy and G. L. Wilkes, "Surfactant level influences on structure and properties of flexible slabstock polyurethane foams", Polymer, 41, 285 (2000). https://doi.org/10.1016/S0032-3861(99)00135-4
  21. ZX. D. Zhang, C. W. Macosko, H. T. Davis, A. D. Nikolov and D. T. Wasan, "Role of Silicone Surfactant in Flexible Polyurethane Foam", J. Colloid Interf. Sci., 215, 270 (1999). https://doi.org/10.1006/jcis.1999.6233
  22. M. J. Krupers, C. F. Bartelink, H. Grunhauer and M. Moller, "Formation of rigid polyurethane foams with semi-fluorinated diblock copolymeric surfactants", Polymer, 39, 2049 (1998). https://doi.org/10.1016/S0032-3861(87)00375-6
  23. T. S. Kim, C. Y. Park, "Mechanical properties of polyurethane foam prepared from prepolymer with resin premix", Elast. Compos., 48(3), 241 (2013). https://doi.org/10.7473/EC.2013.48.3.241