PD-1 유전자 제거 마우스에서 홍역바이러스 감염

Measles Viral Infection in PD-1 Gene Knockout Mice

  • 전진경 (연세대학교 원주의과대학 소아과학교실) ;
  • 김규연 (연세대학교 의과대학 소아과학교실) ;
  • 허지애 (연세대학교 의과대학 소아과학교실) ;
  • 강동원 (관동대학교 의과대학 약리학교실) ;
  • 김기환 (연세대학교 의과대학 소아과학교실) ;
  • 김동수 (연세대학교 의과대학 소아과학교실)
  • Chun, Jin Kyong (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Kim, Kyu Yeun (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Hur, Ji Ae (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Kang, Dong Won (Department of Pharmacology, Kwandong University College of Medicine) ;
  • Kim, Ki Hwan (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Kim, Dong Soo (Department of Pediatrics, Yonsei University College of Medicine)
  • 투고 : 2013.08.19
  • 심사 : 2013.10.13
  • 발행 : 2013.12.25

초록

목적: 아급성경화범뇌염은 퇴행성 신경질환으로 홍역바이러스의 지속적 중추신경계 감염으로 나타난다. 저자들은 마우스 모델을 통해 아급성경화범뇌염 발병에서 만성 바이러스 감염에 관여하는 PD-1 유전자의 역할을 알아보고자 하였다. 방법: 3주령의 동형 PD-1 유전자 제거 마우스, 이형 PD-1 유전자 제거 마우스, 야생 BALB/c 마우스를 대상으로 측뇌실내 홍역바이러스를 주입하여 동물 모델로 하였다. 바이러스 주입 3개월 후, 마우스의 뇌 조직학적 소견을 관찰하고 혈청을 분리하여 IL-21의 혈청 농도를 ELISA kit을 통해 측정하였다. 결과: 야생 BALB/c 마우스에서 가장 많은 국소적 뇌백질의 괴사 및 성상세포의 증가가 관찰되었다. 이형 마우스에서 뇌실질의 병변은 적었으며 동형 마우스는 거의 보이지 않았다. 세 그룹에서 모두 혈청 IL-21의 증가는 보이지 않았다. 결론: 이 결과는 PD-1 유전자가 만성 바이러스 감염에 중요한 역할을 함을 시사한다.

Purpose: Subacute sclerosing panencephalitis (SSPE) is a neurodegerative disease due to persistent measles virus infection. We investigated the role of programmed death-1 (PD-1) molecule which is related with chronic viral infection in developing SSPE in mouse. Methods: We adopt the $PD-1^{-/-}$, $PD-1^{-/+}$, and wild type BALB/c 3 week old mice to make an animal model of SSPE by injecting measles virus (SSPE strain) intraventricularly. Three months after infusion of virus, the mice were sacrificed and examined if the typical pathologic lesions had been progressed. The sera were collected from each group of mice and the serum level of IL-21 was measured with ELISA kit. Results: The necrotic lesions on white matter and gliosis were found in focal areas in wild type BALB/c. The extent of lesion was smaller in heterotype BALB/c. Scanty lesions were found in $PD-1^{-/-}$ mice. The sera level of IL-21 was not elevated in all three groups. Conclusion: Our data suggest that the PD-1 molecule may play a role in persistent viral infection.

키워드

참고문헌

  1. van den Ent MM, Brown DW, Hoekstra EJ, Christie A, Cochi SL. Measles mortality reduction contributes substantially to reduction of all cause mortality among children less than five years of age, 1990-2008. J Infect Dis 2011;204 Suppl 1:S18-23. https://doi.org/10.1093/infdis/jir081
  2. Oldstone MB, Dales S, Tishon A, Lewicki H, Martin L. A role for dual viral hits in causation of subacute sclerosing panencephalitis. J Exp Med 2005;202:1185-90. https://doi.org/10.1084/jem.20051376
  3. Garg RK. Subacute sclerosing panencephalitis. J Neurol 2008;255:1861-71. https://doi.org/10.1007/s00415-008-0032-6
  4. Schneider-Schaulies S, ter Meulen V. Pathogenic aspects of measles virus infections. Arch Virol Suppl 1999;15:139-58.
  5. Gascon GG. Randomized treatment study of inosiplex versus combined inosiplex and intraventrcular interferonalpha in subacute sclerosing panencephalitis (SSPE): International multicenter study. J child Neurol 2003;18:819-27. https://doi.org/10.1177/088307380301801201
  6. Eroglu E, Gokcil Z, Bek S, Ulas UH, Ozdag MF, Odabasi Z. Long-term follow-up of patients with adult-onset subacute sclerosing panencephalitis. J Neurol Sci 2008;275:116-6.
  7. Cathomen T, Mrkic B, Spehner D, Drillien R, Naef R, Pavlovic J, et al. A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 1998;17:3899-908. https://doi.org/10.1093/emboj/17.14.3899
  8. Moulin E, Beal V, Jeantet D, Horvat B, Wild TF, Waku- Kouomou D. Molecular characterization of measles virus strains causing subacute sclerosing panencephalitis in France in 1977 and 2007. J Med Virol 2011;83:1614-23. https://doi.org/10.1002/jmv.22152
  9. Forcic D, Baricevic M, Zgorelec R, Kruzic V, Kaic B, Marina BM, et al. Detection and characterization of measles virus strains in cases of subacute sclerosing panencephalitis in Croatia. Virus Res 2004;99:51-6. https://doi.org/10.1016/j.virusres.2003.10.003
  10. Wong TC, Ayata M, Ueda S, Hirano A. Role of biased hypermutation in evolution of subacute sclerosing panencephalitis virus from progenitor acute measles virus. J Virol 1991;65:2191-9.
  11. Ha SJ, Mueller SN, Wherry EJ, Barber DL, Aubert RD, Sharpe AH, et al. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J Exp Med 2008;205:543-55. https://doi.org/10.1084/jem.20071949
  12. Macatangay BJ, Rinaldo CR. PD-1 blockade: A promising immunotherapy for HIV? Cellscience 2009;5:61-5.
  13. Reuter D, Schneider-Schaulies J. Measles virus infection of the CNS: human disease, animal models, and approaches to therapy. Med Microbiol Immunol 2010;199:261-71. https://doi.org/10.1007/s00430-010-0153-2
  14. Oldstone MB. Modeling subacute sclerosing panencephalitis in a transgenic mouse system: uncoding pathogenesis of disease and illuminating components of immune control. Curr Top Microbiol Immunol 2009;330:31-54.
  15. Griffin DE, Lin WH, Pan CH. Measles virus, immune control, and persistence. FEMS Microbiol Rev 2012;36:649-62. https://doi.org/10.1111/j.1574-6976.2012.00330.x
  16. Tucker WG, Andrew Paskauskas R. The MSMV hypothesis: measles virus and multiple sclerosis, etiology and treatment. Med Hypotheses 2008;71:682-9. https://doi.org/10.1016/j.mehy.2008.06.029
  17. Zhu B, Guleria I, Khosroshahi A, Chitnis T, Imitola J, Azuma M, et al. Differential role of programmed deathligand 1 [corrected] and programmed death-ligand 2 [corrected] in regulating the susceptibility and chronic progression of experimental autoimmune encephalomyelitis. J Immunol 2006;176:3480-9. https://doi.org/10.4049/jimmunol.176.6.3480
  18. Salama AD, Chitnis T, Imitola J, Ansari MJ, Akiba H, Tushima F, et al. Critical role of the programmed death- 1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 2003;198:71-8. https://doi.org/10.1084/jem.20022119
  19. Kroner A, Schwab N, Ip CW, Ortler S, Gobel K, Nave KA, et al. Accelerated course of experimental autoimmune encephalomyelitis in PD-1-deficient central nervous system myelin mutants. Am J Pathol 2009;174:2290-9. https://doi.org/10.2353/ajpath.2009.081012
  20. Ishizaki Y, Takemoto M, Kira R, Kusuhara K, Torisu H, Sakai Y, et al. Association of toll-like receptor 3 gene polymorphism with subacute sclerosing panencephalitis. J Neurovirol 2008;14:486-91. https://doi.org/10.1080/13550280802298120
  21. Lafon M, Megret F, Meuth SG, Simon O, Velandia Romero ML, Lafage M, et al. Detrimental contribution of the immuno-inhibitor B7-H1 to rabies virus encephalitis. J Immunol 2008;180:7506-15. https://doi.org/10.4049/jimmunol.180.11.7506
  22. Mueller SN, Vanguri VK, Ha SJ, West EE, Keir ME, Glickman JN, et al. PD-L1 has distinct functions in hematopoietic and nonhematopoietic cells in regulating T cell responses during chronic infection in mice. J Clinic Invest 2010;120:2508-15. https://doi.org/10.1172/JCI40040
  23. Beutels P, Van Damme P, Van Casteren V, Gay NJ, De Schrijver K, Meheus A. The difficult quest for data on "vanishing" vaccine-preventable infections in Europe: the case of measles in Flanders (Belgium). Vaccine 2002;20:3551-9. https://doi.org/10.1016/S0264-410X(02)00335-3