DOI QR코드

DOI QR Code

GF(2n)위에서 x5+bx3+b2mx2+1=0의 서로 다른 해의 개수

Number of Different Solutions to x5+bx3+b2mx2+1=0 over GF(2n)

  • 투고 : 2013.09.11
  • 심사 : 2013.11.15
  • 발행 : 2013.11.30

초록

주기가 $2^n-1$인 이진수열은 부호이론, CDMA와 같은 통신시스템과 암호체계 등 많은 분야에서 폭넓게응용되고 있다. 본 논문에서는 n=2m, m=4k($k{\geq}2$)이고 $d=3{\cdot}2^m-2$일 때 생성되는 비선형 이진수열의 상호상관관계의 빈도를 분석하기 위해 $GF(2^n)$ 위에서 방정식 $x^5+bx^3+b^{2^m}x^2+1=0$의 해의 유형에 대하여 분석하고 서로 다른 해의 개수를 결정하는 알고리즘을 제안한다.

Binary sequences of period $2^n-1$ are widely used in many areas of engineering and sciences. Some well-known applications include coding theory, code-division multiple-access (CDMA) communications, and stream cipher systems. In this paper we analyze different solutions to $x^5+bx^3+b^{2^m}x^2+1=0$ over $GF(2^n)$. The number of different solutions determines frequencies of cross-correlations of nonlinear binary sequences generated by $d=3{\cdot}2^m-2$, n=2m, m=4k($k{\geq}2$). Also we give an algorithm for determination of number of different solutions to the equation.

키워드

참고문헌

  1. M. K. Simon, J. K. Omura, R.A. Sholtz and B. K. Levitt, "Spread Spectrum Commu- nications", Rockville, MD : Computer Sci., Vol. I, 1985.
  2. Y. Niho, "Multi-valued Cross-Correlation Functions Between Two Maximal Linear Recursive Sequences", Ph.D. thesis, Univ. of Southern California, 1972.S.
  3. W. Golomb, "Shift-Register Sequences", Laguna Hills, CA : Aegean Park, 1982.
  4. R. Gold, "Maximal recursive sequences with 3-valued recursive cross-correlation functions", IEEE Trans. Inform. Theory, IT-14, pp. 154-156, 1968.
  5. T. Kasami, "The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes", Inform. Control, Vol. 18, pp. 369-394, 1971. https://doi.org/10.1016/S0019-9958(71)90473-6
  6. J.S. No and P.V. Kumar, "A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span", IEEE Trans. Inform. Theory, Vol. IT-35, No. 2, pp. 371-379, 1989.
  7. R.A. Scholtz and R. Welch, "GMW sequences", IEEE Trans. Inform. Theory, Vol. IT-30, pp. 548-553, 1984.
  8. M.J. Kwon and S.J. Cho, "The distribution of the values of the cross-correlation function between the maximal period binary sequences," The Journal of the Korea Institute of Electronic Communication Sciences, Vol. 8, No. 6, pp. 891-898, 2013. https://doi.org/10.13067/JKIECS.2013.8.6.891
  9. M.J. Kwon, S.J. Cho, S.H. Kwon, J.G. Kim, H.D. Kim, U.S. Choi, "New Decimations with 4-Valued Cross- Correlations", The Journal of the Korea Institute of Electronic Communication Sciences, Vol. 7, No. 4, pp. 827-832, 2012.
  10. U.S. Choi and S.J. Cho, "Analysis of Cross- Correlation of m-sequences and Equation on Finite Fields", The Journal of the Korea Institute of Electronic Communication Sciences, Vol. 7, No. 4, pp. 821-826, 2012.
  11. S.J. Cho, J.M. Yim, J.G. Kim and S.T. Kim, "Extended sequences of sequences generated by GMW sequences and No sequences", The Journal of the Korea Institute of Electronic Communication Sciences, Vol. 7, No. 2, pp. 271-277, 2012.
  12. J.G. Kim, S.J. Cho, H.D. Kim and U.S. Choi, "New decimations with 5-level cross- correlation and large linear span", The Journal of the Korea Institute of Electronic Communication Sciences, Vol. 8, No. 2, pp. 263-269, 2013. https://doi.org/10.13067/JKIECS.2013.8.2.263
  13. H. Dobbertin, P. Felke, T. Helleseth, and P. Rosendalh, "Niho type cross-correlation function via Dickson polynomials and Kloosterman sums", IEEE Trans. Inf. Theory, Vol. 52, No. 2, pp. 613-627, 2006. https://doi.org/10.1109/TIT.2005.862094
  14. S.J. Cho, Finite fields and its applications, Kyowoosa, 2007.
  15. R. McEliece, "Finite fields for computer scientists and engineers", Kluwer Academic Publisher, Boston, 1987.