DOI QR코드

DOI QR Code

A Novel Performance Evaluation Methodology for Small Cell Networks

소형셀 네트워크 성능 분석을 위한 새로운 평가 방법

  • 임연근 (연세대학교 글로벌융합공학부 융합통신망연구실) ;
  • 채찬병 (연세대학교 글로벌융합공학부 융합통신망연구실)
  • Received : 2013.10.15
  • Accepted : 2013.12.12
  • Published : 2013.12.31

Abstract

A 3D-ray tracing tool is a software considering reflection, penetration, and diffraction of the signals to provide accuracy. To provide communication resources effectively, communication standards adopt Heterogeneous Networks (HetNets) that includes small cells. A 3D performance evaluation methodology becomes more and more important since the coverage of the small cell networks is narrower than that of the macro cell networks. It is difficult to directly apply conventional 2D mathematical models due to the complexity of small cell network; since they have many considerations such as topography, placement of buildings and 3D beamforming techniques. In this paper, we introduce an effective performance evaluation methodology for small cell networks using 3D-ray tracing tool. From simulation results, we conclude that new performance evaluation methodologies by using 3D-ray tracing tool is more suitable than conventional methodology for small cell networks.

3D-ray tracing tool은 신호의 반사, 투과, 그리고 회절까지 고려하여 3차원 공간에서 더욱 정확한 네트워크 성능을 분석하기 위한 소프트웨어이다. 통신표준에서는 통신 자원을 효율적으로 제공하기 위해 소형셀을 포함한 Heterogeneous Networks (HetNets)을 도입하고 있다. 매크로셀에 비해 좁아진 커버리지를 사용하는 소형셀 환경에서는 3D 공간에서 성능분석이 중요해 졌다. 또한 지형구조와 건물의 배치 그리고 3D 빔포밍(beamforming) 기술 등의 사용으로 인해 네트워크 환경이 복잡해지기 때문에 기존의 2차원 수학적 모델들을 이용하여 성능을 분석하기에는 어려움이 따른다. 본 논문에서는 소형셀 네트워크 성능을 더욱 효율적으로 분석하기 위한 3D-ray tracing tool을 활용한 성능평가 방법을 소개한다. 성능평가 결과 기존의 방법보다 3D-ray tracing tool을 활용한 성능평가 방법이 소형셀 환경에서 더욱 적합하다는 결론을 내렸다.

Keywords

References

  1. Y.-G. Lim, M. K. Jeong, K. S. Kim, D. K. Kim, and C.-B. Chae, "New performance evaluation methodology for small cell networks," in Proc. Korea Inform. Commun. Soc. (KICS) Fall Conf., pp. 276-277, Seoul, Korea, Nov. 2011.
  2. S. Sesia, I. Toufik, and M. Baker, LTE: The UMTS Long Term Evolution from theory to practice, 2nd Ed., WILEY, 2010.
  3. V. K. Garg, Wireless Communications and Networking, Morgan Kaufmann, 2007.
  4. S. S. Ghassemzadeh, R. Jana, C. W. Rice, W. Turin, and V. Tarokh, "Measurement and modeling of an ultra-wide bandwidth indoor channel," IEEE Trans. Commun., vol. 52, no. 10, pp. 1786-1796, Oct. 2004. https://doi.org/10.1109/TCOMM.2003.820755
  5. R. Valenzuela, D. Chizhik, and J. Ling, "Measured and predicted correlation between local average power and small scale fading in indoor wireless communication channels," in Proc. IEEE Veh. Technol. Conf. Spring, vol.3, pp. 2104-2108, Ottawa, Canada, May 1998.
  6. Kathrein Scala Division, $65^{\circ}$ Pannel antenna, retrieved Oct., 15, 2013, from http://www.kathrein-scala.com/catalog/742215.pdf.
  7. C.-B. Chae, I. Hwang, R. W. Heath, and V. Tarokh, "Interference aware-coordinated beamforming in a multi-cell system," IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3692-3703, Oct. 2012. https://doi.org/10.1109/TWC.2012.081312.112119
  8. V. Cadambe and S. Jafar, "Interference alignment and the degrees of freedom of the K user interference channel," IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425-3441, Aug. 2008. https://doi.org/10.1109/TIT.2008.926344
  9. S. Jafar, "Blind interference alignment," IEEE J. Sel. Topics Signal Process., vol. 6, no. 3, pp. 216-227, June 2012. https://doi.org/10.1109/JSTSP.2012.2187877
  10. N. Celik, W. Kim, M. Demirkol, M. Iskander, and R. Emrick, "Implementation and experimental verification of hybrid smart-antenna beamforming algorithm," IEEE Antennas Wireless Propag. Lett., vol. 5, no. 1, pp. 280-283, Dec. 2006. https://doi.org/10.1109/LAWP.2006.875894