DOI QR코드

DOI QR Code

A Distributed Time Synchronization Technique for OFDMA-based Wireless Mesh Communication Systems Using Bio-inspired Algorithm

생체모방 알고리즘을 이용한 OFDMA 무선 메쉬 통신시스템의 분산 시간 동기화 기법 연구

  • Received : 2013.09.12
  • Accepted : 2013.11.26
  • Published : 2013.12.31

Abstract

In this paper, we propose a distributed time synchronization technique for OFDMA- based wireless mesh communication systems. The proposed technique employs the bio-inspired algorithm for self-time synchronization in the physical layer. To achieve the network synchronicity, the proposed technique updates the transmission time and the FFT window using the TDoA information of received signals from the neighbor nodes. The proposed technique can achieve fast self-synchronization among nodes with a simple algorithm, without the need of a centralized controller. The performance of the proposed time synchronization technique is evaluated by simulation in terms of convergence speed and convergence probability.

본 논문에서는 최근 차세대 무선 통신네트워크 기술로 주목받고 있는 OFDMA 무선 메쉬통신시스템에서의 분산 시간동기화 기법을 제안한다. 제안방식은 물리계층 기반에서 이루어지는 생체모방 알고리즘을 활용한 자가 분산 시간동기화 기법으로, 인접 이웃노드로부터 수신된 신호의 TDoA(Time Difference of Arrival) 정보를 이용하여 다음 주기의 전송주기와 FFT 시작점을 업데이트한다. 분산처리가 가능한 생체모방 알고리즘의 장점이 반영되어, 제안된 동기화 기법에서도 중앙제어 없이 주위 정보(local Information)와 각 노드에 의한 분산처리만으로 빠르고 간단하게 노드 간 시간 동기 획득이 가능하다. 제안된 분산 시간 동기화 기법은 모의실험을 통하여 시간동기화 수렴 확률 및 정확도 등의 측면에서 성능을 분석한다.

Keywords

References

  1. A. Ouni, H. Rivano and F. Valois, "Wireless mesh networks: energy-capacity tradeoff and physical layer parameters," in Proc. 22nd IEEE Int. Symp. Personal, Indoor, Mobile Radio Commun. (PIMRC), pp. 1845-1849, Toronto, Canada, Sep. 2011.
  2. IEEE LAN/MAN Standards Committee, Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications: High-speed Physical Layer in the 5GHz Band, IEEE Std. 802.11a-1999, 1999.
  3. Y. Zhou, Z. Zhang, and X. Zhou, "OFDMA initial ranging for IEEE 802.16e based on time-domain and frequency-domain approaches," in Proc. Int. Conf. Commun. Technol. (ICCT), pp. 1-5, Guilin, China, Nov. 2006.
  4. K. A Harndi, "Precise interference analysis of OFDMA time asynchronous wireless ad-hoc network," IEEE Trans. Wireless Commun., vol. 9, no. 1, pp. 134-144, Jan. 2010. https://doi.org/10.1109/TWC.2010.01.080255
  5. H. H. Choi and J. R. Lee, "Communication network techniques using bio-inspired algorithm," Inform. Commun. (KICS Mag.), vol. 29, no. 4, pp. 62-71, Mar. 2012.
  6. S. Barbarossa and G. Scutari, "Bio-inspired sensor network design," IEEE Signal Process. Mag., vol. 24, no. 3, pp. 26-35, May 2007. https://doi.org/10.1109/MSP.2007.361599
  7. D. Lucarelli and I. J. Wang, "Decentralized synchronization protocols with nearest neighbor communication," in Proc. 2nd Int. Conf. Embedded Networked Sensor Syst. (SenSys '04), pp. 62-68, Baltimore, U.S.A., Nov. 2004.
  8. L. Liu, Y. Xiao, and J. Zhang, "A bio-inspired time synchronization algorithm for wireless sensor networks," in Proc. 2nd Int. Conf. Comput. Eng. Technol. (ICCET), pp. V4-306-V4-311, Chengdu, China, Apr. 2010.
  9. F. Cucker and S. Smale, "Emergent behavior in flocks," IEEE Trans. Autom. Control, vol. 52, no. 5, pp. 852-862, May 2007. https://doi.org/10.1109/TAC.2007.895842
  10. H. J. Yoo, M. N. Lee, and Y. S. Cho, "A distributed frequency synchronization technique for OFDMA-based mesh networks using bio-inspired algorithm," J. KICS, vol. 37, no. 11, pp. 1022-1032, Nov. 2012. https://doi.org/10.7840/kics.2012.37B.11.1022