Abstract
This paper proposed face recognition methods about performance improvement of the face recognition using the properties of wavelet transform. Using discrete wavelet transform is Daubechies D4 filter that is similar to mother wavelet transform. For discrete wavelet transform method, In this case, by using LL subband only we can reduce processing time and amount of memory in recognition processing. To improve recognition ratio without further loss of 2 dimensional data changing, We applies 2D LDA. We perform SVM training algorithm to the feature vector obtained by 2D LDA. Experiment is performed using ORL database set and Yale database set by Matlab program. Test result shows that proposed method is superior to existence methods in recognition rate and performance time.
본 논문에서는 웨이블릿 변환의 특성을 이용한 얼굴인식 방법을 제안하여 인식성능 향상에 관한 연구를 진행하였다. 사용한 이산 웨이블릿 변환은 모웨이블릿의 특징과 비슷한 Daubechies D4 필터이다. 웨이블릿 변환영역 중 LL 대역의 데이터만을 이용할 경우 원본 데이터에 비하여 크기가 줄어들게 되어 인식과정의 속도와 메모리 사용량을 줄일 수 있게 된다. 또한 2차원 데이터의 변형없이 손실을 줄여 인식률을 향상시키기 위하여 2차원 LDA 방법을 적용하였다. 그리고 여기서 얻은 특징벡터를 이용하여 SVM을 수행하도록 하였다. 실험은 Matlab 프로그램을 통하여 ORL 얼굴 데이터베이스와 Yale 얼굴 데이터베이스를 이용하여 실험을 하였고 기존의 방법들과 인식률과 수행시간을 비교를 함으로써 제안한 방법의 우수성을 입증하였다.