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Abstract 
 

Many applications can be parallelized by using multicore platforms. We propose a 

load-balancing technique for parallelizing a whole application, whose first module (H.264) 

has data independency and whose second module (AES) has data dependency. Instead of 

distributing the first module symmetrically over the multi-core platform, we distribute the 

data-independent workload asymmetrically in order to start the data-dependent workload as 

early as possible. Based on the experimental results with a compression/encryption application, 

we confirm that the asymmetric load balancing can provide better performance than the typical 

symmetric load balancing. 
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1. Introduction 

Multicore processors have been used for handheld devices as well as PCs and servers, and 

parallel processing techniques have been developed for many applications [1] [2] [3] [4]. For 

example, many approaches have been reported to parallelize multimedia workloads [5] [6]. 

Many users create their own content using handheld devices such as smartphones as they 

become powerful. As a result, the growing amount of sensitive information shared by 

handheld device users raises serious privacy concerns, and motivates the need for appropriate 

privacy-preserving mechanisms [7]. 

In this study, we focus on parallelizing a whole application that first compresses input video 

and then encrypts it for privacy protection. We assme we have multiple video files which 

should be compressed and then encrypted for a secure transmission. This application has 

interesting characteristics in that the compression workload has data independency among the 

video data blocks, and the encryption workload has data dependency among the compressed 

video data blocks. In general, many parallelization techniques have been developed for each 

workload individually. However, parallelizing the whole application collectively has rarely 

been reported. Typically, this application can be parallelized by distributing the first workload 

evenly across the cores, and then executing the second workload sequentially by a single core. 

The performance obtained by this typical parallelization is limited according to Amdahl’s law 

[8] [9] [10] [11].  

We propose a load balancing technique that can overcome the performance limitations of 

Amdahl’s law. In order to reduce the idle time caused by the data dependency in the second 

workload, we distribute the data-independent first workload unevenly across the cores and 

keep the data dependency in the second workload. By doing so, we can provide better 

performance than Amdahl’s law computed with typical load balancing (i.e., distributing the 

first workload symmetrically). 

The rest of the paper is structured as follows. Section 2 explains the characteristics of H.264 

multimedia compression [12] and AES encryption [13]. Section 3 describes the proposed 

asymmetric load balancing technique. The experimental results are given in Section 4, and 

conclusions are provided in Section 5. 

2. Background 

2.1 H.264 

Currently, one of the best video coding standards in terms of compression performance is 

H.264 [12]. H.264/MPEG-4 Part 10 or AVC (Advanced Video Coding) is a standard for video 

compression, and is one of the most commonly used formats for the recording, compression, 

and distribution of high-definition video. The coding efficiency gains of advanced video 

codecs such as H.264 come at the price of increased computational requirements. The 

demands for computing power also increase with the shift towards high-definition resolutions.  

Since the size of most multimedia data is substantial, a special-purpose compression chip 

can be employed to satisfy the real-time requirements in a handheld device. However, current 

high-performance uniprocessor architectures are not capable of providing the required 

performance for real-time processing [14]. Therefore, it is necessary to exploit parallelism. 

The H.264 codec can be parallelized either by task-level or data-level decomposition.  
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Parallel implementations of H.264 encoding have been reported. Rodriguez et al. [14] 

implemented an H.264 encoder using Group of Pictures (GOP) and slice-level parallelism on a 

cluster of workstations with Message Passing Interface (MPI). Although real-time operation 

can be achieved with such an approach, the latency is very high. As multicore processors have 

been increasingly used for mobile handheld devices [4], we use PARSEC H.264 [15] which is 

a pthread-based [16] parallel H.264. 

2.2 AES (Advanced Encryption Standard) 

To ensure the confidentiality of data for the next few decades, the National Institute of 

Standards and Technology (NIST) has proposed five modes of block encryption operation in 

2001 [13] in order to replace DES (Data Encryption Standard) which was adopted in 1977. For 

example, the simplest of the encryption modes is the Electronic CodeBook (ECB) mode. A 

message is divided into blocks, and each block is encrypted separately. The disadvantage of 

this mode is that identical plaintext blocks are encrypted into identical ciphertext blocks; thus, 

data patterns are not hidden well. To overcome the security deficiencies of ECB, a technique 

in which the same plaintext block produces different ciphertext blocks is needed. A simple 

way to satisfy this requirement is the Cipher Block Chaining (CBC) mode, where the input to 

the encryption algorithm is the XOR of the current plaintext block and the preceding 

ciphertext block. 

In AES-CBC encryption, there is no parallelism at the block level, as the encryption of each 

AES block of 128 bits depends on the previous block’s encrypted results. Also, secure 

multimedia applications generally first require compression (with enough parallelism) in order 

to reduce the size of the data encrypted. Therefore, a way is needed to efficiently parallelize an 

application whose first module has data independency and whose second module has data 

dependency 

3. Asymmetric Load Balancing 

To understand our target application’s computational characteristics, we explain this 

application with a 4-core processor execution. Fig. 1 shows the data dependencies in the target 

application. 1-1, 1-2, 1-3, and 1-4 denote the raw video data to be compressed by cores 1, 2, 3, 

and 4, respectively. Then, 2-1, 2-2, 2-3, and 2-4 denote the compressed video data to be 

encrypted by cores 1, 2, 3, and 4, respectively. The first module consists of four independent 

operations (1-1, 1-2, 1-3, and 1-4), whereas the second module consists of four dependent 

operations (2-1, 2-2, 2-3, and 2-4). Each operation of the second module has data dependency 

with the previous operations, both in the first module and the second module. For example, 

operation 2-4 should be performed after executing operations 1-4 and 2-3. 

In this target application, the performance gain obtained by typical parallelization is limited 

by Amdahl’s law [9], as shown in Fig. 2. To provide better performance, we propose a load 

balancing technique that can overcome these limitations. In order to reduce the idle time 

caused by the data dependency in the second module, we distribute the data-independent first 

module unevenly across the cores, as shown in Fig. 3. By distributing the first module 

asymmetrically and keeping the data dependency in the second module, better performance 

can be provided than that suggested by Amdahl’s law with typical load balancing (i.e., 

distributing the first module symmetrically). Note again that, we have multiple 

cores/platforms having the same computing capability, and typical load balancing approaches 

distribute the same amount of work to the same capability core/platform [17][18][19]. 
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Fig. 1. Data dependencies in the target application  
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Fig. 2. Symmetric load balancing 

 

That is, in typical load balancing, the operations in the first module are executed 

symmetrically by 4 cores before barrier synchronization, and then the operations in the second 

module are executed sequentially by 1 core due to its data dependency (See Fig. 2). In contrast, 

the proposed load balancing approach assigns the four operations in the first module 

asymmetrically in order to reduce the idle time in the second module caused by the data 

dependency (See Fig. 3). For example, operation 2-1 in the second module can be executed 

immediately after operation 1-1 in the first module without waiting for operation 1-2. After 

executing operation 2-1, cores 1 and 2 are synchronized using a mutex [16], and then operation 

2-2 is performed. In a similar way, cores 1 and 3 are synchronized, and then 2-3 operation is 

performed. 
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Fig. 3. Asymmetric load balancing 

 

The determination of the amount of workload assigned to each core is explained as follows. 

We assume the second module is executed sequentially on core 1. As shown in Fig. 4, the idle 

time can be minimized when the sum of the first module and the second module on core 1 is 

equal to the execution time of the first module on core 2. Let n, P, WT, and Wi denote the 

number of cores, the degree of parallelism of the application (i.e., P=0.9 for 90% parallelism), 

the total workload (i.e., workloadfirst_module + workloadsecond_module), and the amount of workload 

of the first module assigned to the i-th core, respectively. Then, Wi can be computed using (1) 

and (2). 
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Fig. 4. Idle times caused by the workload assigned to each core 
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Since the execution time depends on the assigned workload, we can estimate the execution 

time of the asymmetric load balancing. The execution time of module 1 (without data 

dependency) and module 2 (with data dependency) can be computed using (3) and (4), where 

TPn and TSn are the execution time of module 1 and module 2 on the n-th core.  
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Finally, the total execution time of the asymmetric load balancing can be computed by using 

(5).  
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4. Experimental Results 

4.1 Estimated and Measured Speedup 

For evaluating the proposed approach, we parallelized the target application (video 

compression/encryption) with pthread on real machines (core2 duo E8400, i5-750, and 

i5-2500 multicore processors). We also used a data set of 25 YUV frames (4:2:0 format) 

composed of three frames per video sequence. The size of an experimental video image was 

352×288 (CIF format), and the number of frames was 2400. 

First, the execution time of multimedia compression and data encryption was measured. 

H.264 was used for multimedia compression, and AES-CBC was used for data encryption 

with CIF data (which was about 348 MB). Table 1 shows that the video encoding time was 

longer than the encryption time by a factor of about 16. It is because the video encoding 

techniques generally have higher computational complexity than the encryption techniques, 

and the data size for encryption is already reduced by the preceding compression. 
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Table 1. Execution time of compression and encryption with 1 core  

 
Multimedia Compression 

(H.264) 

Data Encryption 

(AES-CBC) 

core2 duo E8400 3869 msec 241 msec 

i5-750 3245 msec 254 msec 

i5-2500 2761 msec 165 msec 

 
 

An execution time ratio of about 95:5 was obtained, and the typical symmetric load 

balancing of H.264 is shown in Fig. 5(a). In this application, the asymmetric load balancing of 

H.264 shown in Fig. 5(b) can provide faster execution time. In the symmetric load balancing, 

the performance is limited by Amdahl’s law. If the execution time of the parallel portion (i.e., 

compression) is 95 seconds and the execution time of the sequential portion (i.e., encryption) 

is 5 seconds, the ideal speedup of the symmetric load balancing with 4 cores is limited by 3.48. 

However, the asymmetric load balancing can provide an ideal speedup of 3.71. 
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(a) Symmetric load balancing                           (b) Asymmetric load balancing 

 

Fig. 5. An illustration of symmetric/asymmetric load balancing of  

H.264/AES-CBC workload with 4 cores (Sequential execution time of 100 is assumed.) 

 

 

Fig. 6, Fig. 7, and Fig. 8 show the comparison of the speedup of the typical and proposed 

approaches. The three real machines (Core2 Duo E8400, i5-750, and i5-2500) have different 

numbers of cores, the first having 2 cores, and the latter two each having 4 cores. As shown in 

Fig. 6, Fig. 7, and Fig. 8, the proposed load balancing approach can provide better 

performance than the performance obtained by Amdahl’s law with typical symmetric load 

balancing. That is, our load balancing technique can overcome the performance limitations of 

Amdahl’s law, and efficiently apply the multimedia compression/encryption application to the 

multicore platforms. 
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Fig. 6. Speedup on Core2 Duo E8400 

 

 
Fig. 7. Speedup on i5-750 

 

 
Fig. 8. Speedup on i5-2500 
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4.2 Analysis 

To compare the speedup for the given environments with different application parallelism and 

numbers of cores, the speedup of symmetric/asymmetric load balancing approaches were 

estimated in various conditions. First, to verify the accuracy, the estimated results were 

compared with measured results, as shown in Table 2, which shows the estimated and 

measured speedup on the three real machines. The results show our proposed load balancing 

technique can overcome the performance limitations of Amdahl’s law. 
 

Table 2. Estimated/Measured speedup 

 
Symmetric load balancing Asymmetric load balancing 

estimated measured estimated measured 

core2 duo E8400 

(2 cores) 
1.90 1.87 1.95 1.94 

i5-750 

(4 cores) 
3.48 3.27 3.71 3.44 

i5-2500 

(4 cores) 
3.48 3.39 3.71 3.60 

 

 

Finally, we observed the speedup according to the number of cores and the application 

parallelism. Fig. 9 and Fig. 10 show each speedup for application having 95% and 75% 

parallelism, respectively. The number of cores ranged from 1 to 8. As shown in Fig. 9 and Fig. 

10, the proposed approach has improved speedup compared to the typical approach. With the 

application having 95% parallelism on the 8-core processor, the typical approach provides the 

speedup of 5.93, while the proposed approach provides the speedup of 6.73. Based on the 

estimated results, we confirmed that the proposed approach can provide better speedup than 

Amdahl’s law computed with typical load balancing as the number of cores increased. 

 

 

 
Fig. 9. Speedup of the application having 95% parallelism 
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Fig. 10. Speedup of the application having 75% parallelism 

5. Conclusion 

We have proposed a load balancing technique for parallelizing an application whose first 

module has data independency and whose second module has data dependency. By 

distributing the first module asymmetrically and keeping the data dependency in the second 

module, we can provide better performance than Amdahl’s law computed with typical load 

balancing. With all combinations of the number of cores and the degree of parallelism 

examined, we have derived the amount of workload assigned to each core.  

Experiments with H.264/AES have demonstrated that our load balancing technique can be 

useful in parallelizing applications whose first module has data independency and whose 

second module has data dependency (i.e., compressing the video data first, and then 

encrypting the compressed data). The proposed load balancing technique can be easily 

extended to the applications with reversed conditions characterized by a first module with data 

dependency and second module with data independency (e.g., decrypting the encrypted data 

first, and then decompressing the compressed video data). 
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