
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013 2173

Copyright ⓒ 2013 KSII

This research was supported by Basic Science Research Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education, Science and Technology (grant number 2012R1A1A1002133)

http://dx.doi.org/10.3837/tiis.2013.09.006

Autonomous Deployment in Mobile Sensor
Systems

Hojin Ghim

1
, Dongwook Kim

1
 and Namgi Kim

2

1 Dept. of EECS, KAIST

373-1 Guseong, Yuseong, Daejeon, 305-701 - Korea

[e-mail: {hojin, kimdw}@nslab.kaist.edu]
2 Dept. Of CS, Kyonggi University

San 94-6, Iui, Yeongtong, Suwon, Gyeonggi, 443-760 - Korea

[e-mail: ngkim@kyonggi.ac.kr]

*Corresponding author: Namgi Kim

Received March 26, 2013; revised June 10, 2013; revised July 23, 2013; accepted August 18, 2013;

published September 30, 2013

Abstract

In order to reduce the distribution cost of sensor nodes, a mobile sensor deployment has

been proposed. The mobile sensor deployment can be solved by finding the optimal layout and

planning the movement of sensor nodes with minimum energy consumption. However,

previous studies have not sufficiently addressed these issues with an efficient way. Therefore,

we propose a new deployment approach satisfying these features, namely a tree-based

approach. In the tree-based approach, we propose three matching schemes. These matching

schemes match each sensor node to a vertex in a rake tree, which can be trivially transformed

to the target layout. In our experiments, the tree-based approach successfully deploys the

sensor nodes in the optimal layout and consumes less energy than previous works.

Keywords: Sensor deployment, mobile sensors, self-organization, sensor system, rake tree,

layout model, regular triangular tessellation

2174 Ghim et al.: Autonomous Deployment in Mobile Sensor Systems

1. Introduction

The power of sensor networks comes from the distribution of small sensor nodes across a

wide area with maximizing sensing coverage while preserving network connectivity. Many

previous researches on sensor deployment assume that sensor nodes are randomly distributed

in the entire target area before the deployment. Such uniformly random distribution of the

sensor nodes may be realized manually. However, manually deploying a large number of

sensor nodes across a wide area is quite costly or impossible due to hard-to-access terrain or a

hostile environment. The nodes may be thrown away from aircraft. But this way makes it

difficult to lay the nodes on the designated location and to support connectivity among the

sensor nodes. Therefore, to reduce the cost of uniform distribution of the sensor nodes and

prevent network partitioning, researchers have proposed self-deployment of mobile sensors

[1].

However, the mobile sensor deployment still has challenges in target layout problem and

sensor matching problem. The target layout problem is finding how to determine the optimal

layout according to the current layout of the sensor nodes. A target layout should be optimal. It

means that the target layout of the sensor nodes should cover maximum area. Also, in the

target layout, each sensor node should be directly connected as many as possible for

robustness. The sensor matching problem is finding a scheme that provides a way to match

each sensor node to a point in the target layout. Once the sensor nodes move to the positions of

the matched points, the target layout is constructed.

To solve these deployment problems, the greedy approach based on the concept of virtual

force (or potential fields) among sensor nodes was proposed [2]. The greedy approach is very

simple and flexible. Therefore, many deployment schemes have emerged from this approach

[3][5][6][7][8]. However, the greedy approach fundamentally has shortcomings. The main

cause of these shortcomings is that fact that it makes use of only local and neighbor

information for deciding the movement of sensor nodes. In order to eliminate these

shortcomings, we propose a new approach, called tree-based approach. The proposed

approach uses the global information from the initial layout of sensor nodes. Using the global

in formation, we decide the final destination for each node first and move accordingly one time

only. Therefore, we can achieve the minimum energy consumption by following the shortest

way.

In the following sections, we describe the previous works for deployment problem of the

mobile sensor networks. Then, we describe the tree-based approach for deployment problem

in detail in Section 3. Layout models that are mathematical models for target layouts are

explained in Section 4. Matching schemes that can be adopted with the tree-based approach

are described in Section 5. The performance is evaluated in Section 6 and conclusion is made

in Section 7.

2. Related Work

A large amount of research literature exists for the deployment problem of mobile sensor

networks. These can be categorized into three groups: the greedy approach, the coordinated

approach, and the centralized approach.

In the greedy approach, deployment methods attempt to improve the coverage iteratively.

In an iteration, each node decides and moves its target location based on various factors such

as virtual forces from neighbors [2][5][6][7][8], the Voronoi cell associated to the node [3][4],

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013 2175

Copyright ⓒ 2013 KSII

holes around, and obstacles [6]. Some of them [5][7] try to make the regular triangular

tessellation out of the iterative exertion of virtual forces. The iteration stops when the amount

of movement in one iteration is below a predefined threshold or the maximum number of

iterations has been reached. Minimax [3] exploits the fact that any point in a Voronoi cell has

one sensor node as the closest node. Each node calculates the minimum enclosing circle of its

Voronoi cell and moves to the center of the circle. In this way, it tries to cover all the points in

the Voronoi cell and leave minimum holes in the cell. In ATRI [7], each sensor node exerts

virtual force on its neighbors, letting them move toward a vertex of a hexagon. This exertion

accelerates the construction of regular triangular tessellation even though it is not guaranteed.

The performance of the greedy approach is highly dependent on the factors that decide the

next location of the nodes. According to the factors, the methods using greedy approach tend

to get aggressive or conservative in expanding the sensor networks at the boundary area. If

they are too aggressive, the boundary will expand rapidly. The nodes at the boundary may lose

connection with the neighbors and sometimes be forced to go backwards. On the contrary, if

they are too conservative, the boundary expands too slowly so that they take too many

iterations to cover the entire area. But, it is hard to balance the aggressiveness and

conservativeness in the greedy approach because there is no central control and the nodes do

not have the information about the surroundings outside their range.

The coordinated approach exchanges messages among sensor nodes and decides their

target positions based on the exchanged information. To get the appropriate target positions,

the sensor nodes should build some mechanism by themselves so that they can agree with each

other about decisions. However, organizing this mechanism takes too much cost and energy

unless careful consideration is taken. In the mechanism, the sensor nodes may not move at the

same time. Some of the nodes may get their target positions after some of the others have

moved. [9] assume a grid-like partition in the target area. A leader is elected in each cell and

the leaders coordinate with each other to move nodes from cells with too many nodes to cells

with too few nodes. [10] chooses a seed node among the nodes at first. Then, the neighbors of

the seed move to the neighboring position of the seed in the regular triangular tessellation. This

process propagates until all nodes are in the position of the regular triangular tessellation.

However, the methods described above assume that the sensor nodes are dispersed throughout

the target area initially. But, they will take significant amount of cost and energy if the initial

deployment is concentrated in a small area.

Methods in the centralized approach are run at a separate server or the sink. The server or

sink runs an algorithm to decide the final position of each sensor node and broadcast them. In

the centralized approach, there are various methods based on virtual forces [2][11], circle

packing [12], and one of the generic optimization techniques [13][14][15][16]. Obviously,

however, these methods may be not affordable for some applications. The existence of a

central server and the connections of the server and sensor nodes may be often not affordable

due to application requirement or cost.

3. Tree-based Approach

In this paper, we assume that the sensor networks are composed of homogeneous sensor nodes.

Each sensor node is capable of monitoring events or phenomena within a sensing range, RS.

The sensor nodes can communicate with other sensor nodes within a communication range, RC.

In addition, each sensor node detects its location by a localization device or a localization

process. Once its location is detected, it sends a message that contains the ID and its own

2176 Ghim et al.: Autonomous Deployment in Mobile Sensor Systems

location before the initiation of deployment. So, other sensor nodes within its communication

range can hear it. Lastly, the initial layout of the sensor nodes should not be partitioned.

With these assumptions, we are presenting a new approach for the deployment of mobile

sensor networks, namely the tree-based approach. In the tree-based approach, a spanning tree

is built over the initial sensor network to be used as a base tree at first. In order to build the

base tree and elect the root node, we use the minimum diameter spanning tree (MDST)

algorithm [17]. After that, the tree-based approach gathers global information about the initial

layout and the base tree to the root node. Then, the target layout is determined at the root node

by realizing a layout model. Thereafter, in the matching phase, information describing the

target layout is disseminated to each sensor node following the hierarchy of the base tree. At

the same time, each sensor node is matched to a vertex of the target layout according to a

matching scheme. In the last movement phase, each sensor node moves to the matched vertex

to finally create the target layout.

The tree-based approach provides several advantages. The tree-based approach can

achieve the target layout exactly as specified by a layout model. Besides, the sensor nodes do

not move more than needed to arrive at the target positions. Therefore, wasting of energy is

avoided. Moreover, no priori information about the target area or the environment is required.

Lastly, the duration of the deployment is predictable and the initial layout does not affect the

performance of the deployment, whether the sensor nodes are evenly distributed or skewed.

The tree-based approach is self-organizable [18][19]. It uses the global informations

which are collected and aggregated from the sensor nodes. The global informations that can be

collected without incurring extra overhead of communication messages or additional delay

include: the number of nodes and its descendants, and the geometric average of positions of

each node and all its descendants in the base tree. By using and aggregating these informations

only, the cost of tree-based approach can be limited with O(n) number of messages within

duration of O(R) where n is the total number of sensor nodes and R is the radius of the base tree.

As a result, the tree-based approach can be scalable in proportion to the number of sensor

nodes.

4. Layout Model

A target layout for sensor deployment is a layout of sensor nodes that the deployment scheme

is trying to achieve. A target layout with lots of vertices may take lots of space in the

constrained memory of the sensor nodes. It may also require a large amount of energy to be

transmitted between the sensor nodes in the process of deployment. Therefore, we need a

scheme to represent a target layout within a limited amount of memory and energy. To that end,

we propose a layout model. A layout model is a geometrical model that can produce a number

of vertices when realized with a constant number of variables.

The tree-based approach for deployment can adopt various layout models according to the

applications of the sensor networks. In this paper, we propose a layout model which achieves

1-coverage and k-connectivity (k ≤ 6) with RC ≥ √3 ∙ RS in free space. 1-coverage means that

any point in the target area is covered with at least one sensor node. k-connectivity means that

any sensor node is directly connected to at least k neighbor nodes for robustness. Other types

of layout models also may be proposed to meet various requirements of sensor networks. But,

due to the limits of space, we omit them.

In a sensor network with 1-coverage, k-connectivity (k ≤ 6), and RC ≥ √3 ∙ RS, the optimal

layout should cover the maximum area with a given number of sensor nodes without incurring

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013 2177

Copyright ⓒ 2013 KSII

any hole. Also, each sensor node should be directly connected with at least k neighbors. The

pattern of the optimal layout with such properties is well-studied and known to be the regular

triangular tessellation [7][20][21][22]. The regular triangular tessellation lets each sensor node

have six neighbor nodes, which are equally distant from each other and delivers 6-connectivity.

Each sensor node and its six neighbors form six regular triangles of which the length of each

side is min(RC, √3 ∙ RS) so that the coverage is maximized without holes.

Although the regular triangular tessellation guarantees the maximum coverage and

6-connectivity, it only specifies the pattern of the nodes without considering the shape of the

boundary. The shape of the boundary of the target layout is supposed to be specified in

consideration of the objectives of the sensor network and the terrain of the target area.

Commonly, the k-connectivity requirement is relaxed for the sensor nodes at the boundary of

the layout. Accordingly, in order to provide a optimal layout model that embeds the pattern of

regular triangular tessellation and confines the practical boundary of the layout, we define a

hexagonal-boundary regular triangular tessellation (HRTT) layout model.

Definition hexagonal-boundary regular triangular tessellation (HRTT) is a layout model in

which all vertices constitute the regular triangular tessellation, with the boundary of the layout

shaped as a hexagon. HRTT should satisfy the following conditions:

1. The center-distance of each boundary vertex is either the same as the radius of the

layout or less than the radius by 1.

2. The boundary vertices of which the center-distance is the radius (called farthest

vertices) are adjacent.

Center-distance denotes the hop-distance from a vertex to the center vertex, which is the

graphic center of the layout. Also, radius denotes the maximum center-distance among all the

vertices.

(a) 37 vertices (b) 44 vertices

Fig. 1. An example of HRTT

Examples of HRTT with 37 and 44 vertices are shown in Fig. 1. The Condition 2 of HRTT

is followed by that the boundary vertices of which the center-distance is the radius – 1 are also

adjacent because the boundary vertices of HRTT form a cycle. An instance of HRTT can be

denoted by ((xC, yC), D, α, V) where (xC, yC) is the position of the center vertex; D is the

distance between neighboring vertices; α is the angle of the first farthest vertex; and V is the

number of vertices. For example, Fig. 1a shows a realization of HRTT, ((0,0), 1, 0, 37). In this

case, all the boundary vertices are the farthest vertices with center-distance 3, which is the

2178 Ghim et al.: Autonomous Deployment in Mobile Sensor Systems

same as the radius. Given an HRTT, the exact positions of V vertices can be determined and

matched to sensor nodes in order to be used as target positions.

In the tree-based approach, the root node can determine the target layout by realizing

HRTT with ((xroot, yroot), min(RC, RC ≥ √3 ∙ RS), α1, V1) where (xroot, yroot) is the position of the

root node; α1 is the angle of the first child of the root node; and V1 is the number of sensor

nodes. Therefore, in realizing HRTT, the root node needs only the total number of sensor

nodes to be collected in the information-collecting phase, whereas other items of information

are already known from itself or its neighbors.

5. Matching Scheme

The matching of sensor nodes to vertices in the target layout is equivalent to the

minimum-weight connected matching problem [23]. However, an efficient distributed

algorithm to solve this problem has not yet been discovered. Thus, we provide various

heuristics for the problem, which are called matching schemes.

In this paper, three matching schemes for the target layout constructed with the HRTT

layout model are presented. The proposed matching schemes employ the divide-and-conquer

strategy. They divide the target layout such that each of the parts is matched to a group of

sensor nodes. Also, these parts exploit the hierarchy of the base tree to group the sensor nodes

recursively. Therefore, each group is composed of a child of the current node and the

descendants of that child. Then, a part of the target layout, which contains the same number of

vertices as the number of sensor nodes in the group, is matched to the group. Eventually, each

sensor node can be matched to one of the vertices in the target layout.

5.1 Rake Tree Scheme

Prior to matching each node to a vertex of the target layout, the rake tree scheme builds a rake

tree. (The concept of rake tree was introduced and the tree-based approach with the rake tree

scheme was briefly proposed in [24]. However, we just introduced a simplified tree-based

approach with the rake tree scheme only in that paper. We did not fully propose and evaluate

the rake tree scheme. Moreover, we did not extend the tree-based approach with the balanced

rake tree scheme nor the rake-ID space scheme at all.) A rake tree is a special type of spanning

tree, as shown in Fig. 2. It can be transformed from the base tree with only reestablishing the

relationships of the sensor nodes. A rake tree also can be easily transformed to an HRTT

because each vertex of a rake tree is equivalent to a vertex in HRTT.

Using a rake tree, instead of HRTT, has several advantages for matching sensor nodes to

vertices as follows. Firstly, it is easy to identify vertices by labeling them with unique IDs.

Secondly, vertices can be easily grouped and assigned to a group of sensor nodes. Lastly,

groups of vertices can be represented in a limited number of variables without enumerating

every vertex in the group. These advantages are essential for the rake tree scheme to be

scalable by limiting the size of communication messages to be constant.

5.1.1 Rake Tree

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013 2179

Copyright ⓒ 2013 KSII

Root

(1,1,1) (1,2,1) (1,3,1)

(2,1,1) (1,2,2) (1,3,2)

(2,2,2) (2,2,1) (1,3,3)

(2,3,3) (2,3,2) (2,3,1)

(3,1,1)

(4,1,1)

(5,1,1)
(6,1,1)

(0,0,1)

Fig. 2. A rake tree and rake-IDs

Definition rake tree is a spanning tree with the following properties:

1. Children of each vertex are ordered by the angles around their parent.

2. Vertices in the same level of each subsidiary are ordered by the ordinals of their parents

and then by the ordinals of themselves.

3. The root vertex has six children, which are each themselves the root vertex of subtrees,

or subsidiaries, of the rake tree.

4. The first vertex in each level of each subsidiary has two children.

5. Other vertices have one child.

In a rake tree, each vertex has a unique rake-ID which represents the topological position

of the associated vertex in the rake tree, as shown in Fig. 2.

Definition A rake-ID is defined as a vector with three elements, denoted as (k, i, j):

1. k is the subsidiary number.

2. i is the level of the vertex in the subsidiary.

3. j represents the ordinal of the vertex among the vertices of the same level in its

subsidiary. If a vertex is the first vertex of its level in the subsidiary, j is 1. If a vertex is

the second vertex of its level in the subsidiary, j is 2.

The root vertex has the special rake-ID (0,0,1). The rake-ID of the fifth child of the root vertex,

for example, is (5,1,1) and its children are (5,2,1) and (5,2,2), respectively. The rake tree can

be equivalently redefined using rake-IDs.

Since a rake-ID specifies a particular vertex in the rake tree, it can also determine a

particular vertex in HRTT. Therefore, by assigning a unique rake-ID to each sensor node, each

sensor node is matched to a particular vertex in HRTT. The target position of each sensor node

with rake-ID (k, i, j) in accordance with HRTT ((xC, yC), D, α, V) can be calculated as follows:

)
3

sin()1())1(
3

sin()1(

)
3

cos()1())1(
3

cos()1(

kDjkDjiyy

kDjkDjixx

C

C

2180 Ghim et al.: Autonomous Deployment in Mobile Sensor Systems

 (a) Type-6 branch (b) Type-2 branch (c) Type-1 branch

Fig. 3. Branch types of a rake tree

A rake tree can be divided into branches, which in turn can be divided into smaller

branches. A branch of a rake tree can be represented with ((k, i, j), N) where (k, i, j) is the

rake-ID of the head of the branch and N is the number of vertices in the branch. A branch is one

of the three types, which are as follows:

 Type-6 branch: If k = 0 for a branch, then the head of the branch, which is incidentally

the root vertex of the rake tree, has six children and the branch is shaped as shown in

Fig. 3a.

 Type-2 branch: If k ≠ 0 and j = 1 for a branch, then the head of the branch has two

children and the branch is shaped as shown in Fig. 3b.

 Type-1 branch: Otherwise, the head of the branch has one child and the branch is

shaped as shown in Fig. 3c.

The branches of a rake tree are units of division in a rake tree scheme. A rake tree scheme

divides the target HRTT into several branches to match them to groups of sensor nodes.

A branch may contain several sub-branches. For each type of the branch, sub-branches of

branch ((k, i, j), N) can be determined as follows:

 For a Type-6 branch, which can be given to only the root node, there are six

sub-branches (Fig. 3a) which are ((1, 1, 1), (N – 1) / 6), ((2, 1, 1), (N – 1) / 6), …, ((6, 1,

1), (N – 1) / 6). In case (N – 1) / 6 is not an integer, the remnants are distributed starting

from the first sub-branch so that only one level is appended to the bottom of the

sub-branch. If more vertices are left, they are added to the vertices of the second

sub-branch, the third sub-branch, and the next sub-branch until all the remaining

vertices are distributed. By distributing the remaining vertices like this, the rake tree

can be equivalent to the target HRTT, whereas the remaining vertices correspond to the

farthest vertices of the target HRTT.

 For a Type-2 branch, there are two sub-branches (Fig. 3b) which are ((k, i + 1, 1), N1)

and ((k, i + 1, 2), N2). N1 and N2 can be determined by solving the following

simultaneous equations: N – 1 = N1 + N2 and N1 = N2(N2 + 1) / 2. In case N1 and N2 are

not integers, the remnants are added to N1 in order to minimize the unbalance.

 For a Type-1 branch, there is only one sub-branch (Fig. 3c) which is ((k, i + 1, j + 1), N

– 1).

5.1.2 Matching with the Rake Tree Scheme

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013 2181

Copyright ⓒ 2013 KSII

The divide-and-conquer strategy is employed to match the sensor nodes to vertices of the

rake tree. As matching progresses from the root node toward the leaf nodes, the base tree is

transformed into a rake tree. So, a subtree of the base tree is matched to a branch of the rake

tree, as shown in Fig. 4.

Fig. 4. Matching subtrees of a base tree to the branches of a rake tree

In matching with the rake tree scheme, the root node determines a rake tree from the target

HRTT ((xroot, yroot), D, α, V) at first. Then, the root node matches itself with a rake-ID and its

children with branches. When matching at the root node is finished, matching at each child of

the root node starts. After matching at the children of the root node is finished, matching at the

grandchildren of the root node starts. It progresses towards the leaf nodes of the base tree.

Matching at node n is started when a branch ((k, i, j), N) is given to n by its parent, as

follows:

1. Node n matches itself to the rake-ID of the head of the given branch, which is (k, i, j). If

node n is the root node, it matches itself to the rake-ID (0, 0, 1).

2. The sub-branches of the given branch are determined by node n, as detailed in Section

5.1.1. In case of the root node, it divides the rake tree into six sub-branches except the

root vertex, specifically ((1, 1, 1), (V – 1) / 6), ((2, 1, 1), (V – 1) / 6), …, ((6, 1, 1), (V –

1) / 6).

3. The number of children of node n in the base tree is adjusted to be the same as the

number of the sub-branches in the rake tree. This is accomplished by adjusting children,

as described later in this section. In case of the root node, it has six sub-branches and

can only match its six children to the sub-branches. Therefore, it should adjust its own

children in the base tree so that only six children are left to be matched.

4. Since the number of vertices of each sub-branch is already decided by the rake tree,

each child of the node n should have the same number of descendants. This can be

accomplished by adjusting descendants, which also will be discussed later in this

section.

5. Each sub-branch is matched to each child of node n by sending a message that contains

the representation of the sub-branch.

Once all the sensor nodes, up to the leaf nodes, are matched to their rake-IDs, the matching

phase is complete.

5.1.2.1 Adjusting Children

Adjusting children is a process that adjusts the number of children of a sensor node in the base

tree to match the number of sub-branches of a branch in a rake tree. The number of

sub-branches, denoted as TOC, can be identified from the type of the branch. TOC = 6 for a

2182 Ghim et al.: Autonomous Deployment in Mobile Sensor Systems

Type-6 branch, TOC = 2 for a Type-2 branch, and TOC = 1 for a Type-1 branch, respectively.

Adjusting children algorithm is shown in Fig. 5. Unfortunately, for some rare cases, adjusting

children may fail due to the lack of connectivity between the parent and the grandchildren. If

this fails, a branch of the rake tree can be missing and the sensor nodes that were expected to

be matched to the vertices of the branch will be matched to the vertices of other branches,

incurring an unbalanced rake tree, and, eventually, an incomplete HRTT in which the

boundary is not hexagonal.

5.1.2.2 Adjusting Descendants

Adjusting descendants is a process that adjusts the number of descendants of each child of a

sensor node in the base tree to match the number of vertices in the sub-branch that will be

given to the child. The number of descendants of child c, denoted as TODc, can be identified

from the type and the number of vertices n of the branch as follows. For a Type-6 branch, N –

1 = TOD1 + TOD2 + … + TOD6 and TOD1 = TOD2 = … = TOD6. For a Type-2 branch, N – 1 =

TOD1 + TOD2 and TOD1 = TOD2 (TOD2 + 1) / 2. For a Type-1 branch, N – 1 = TOD1.

For adjusting descendants, each child is checked with the number of descendants one by

one. If the number of descendants of child c, NODc, in the base tree is smaller than TODc, one

of the child c and the child c + 1 is adopted to the other with the same process as described

above for adjusting children to effectively increase NODc by merging the subtree of c and the

subtree of c + 1.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013 2183

Copyright ⓒ 2013 KSII

Fig. 5. AdjustingChildren algorithm

On the other hand, if NODc is larger than TODc, the subtree of c is split so that only TODc is

left in the subtree. This can be done using the CutSubtree algorithm (Fig. 6) by calling it with

CutSubtree(c, NODc – TODc). It then finds the sensor nodes among the descendants of c that

can be adopted by other nodes in the descendants of c + 1. The found sensor nodes are adopted

with the same process as described for adjusting children in order to effectively reduce NODc.

An example of adjusting descendants is illustrated in Fig. 7.

Procedure AdjustingChildren(n, NOC, TOC, childrenList)
sortedChildrenList ← sort childrenList w.r.t angles around node n
c1 ← get a node and delete it from sortedChildrenList
if NOC > TOC then

adjustedChildrenList ← Ø
while NOC > TOC and sortedChildrenList ≠ Ø do

c2 ← get a node and delete it from sortedChildrenList
if c1 is within communcation range from c2 then

if c1 is at a greater distance from node n than c2 then
add c1 as a new child of c2

adjustedChildrenList ← adjustedChildrenList ∪ { c2}
else

add c2 as a new child of c1

adjustedChildrenList ← adjustedChildrenList ∪ { c1}
end if
NOC ← NOC - 1
c1 ← get a node and delete it from sortedChildrenList

else
c1 ← c2

end if
end while

else if NOC < TOC then
adjustedChildrenList ← childrenList
while NOC < TOC and c1 ≠ Ø do

grandchildrenList ← get the children list of c1
while NOC < TOC and grandchildrenList ≠ Ø do

cg ← get a node and delete it from grandhildrenList
if cg is within communcation range from node n and cg is not in
adjustedChildrenList then

get rid of cg from child list of c1
adjustedChildrenList ← adjustedChildrenList ∪ { cg}
NOC ← NOC + 1

end if
end while
c1 ← get a node and delete it from sortedChildrenList

end while
end if
return adjustedChildrenList

end procedure

2184 Ghim et al.: Autonomous Deployment in Mobile Sensor Systems

Fig. 6. CutSubtree algorithm

Fig. 7. An example of adjusting descendants

With a sparse initial layout, there may be such cases that CutSubtree cannot find any

descendant to be adjusted. In these cases, the vertices in the sub-branches will not be the same

as TOD and the branch may be unbalanced. It eventually may make the rake tree unbalanced

and the final layout may not have the boundary of the target HRTT as determined by the root

node.

5.2 Balanced Rake Tree Scheme

A balanced rake tree scheme is proposed in order to build a balanced rake tree even when the

rake tree scheme fails. It rematches the sensor nodes that are originally matched to a vertex

that is outside the balanced rake tree to another vertex inside the balanced rake tree.

5.2.1 Balanced Rake Tree

Definition A balanced rake tree is a type of rake tree with the following properties:

1. The differences between the values of i in the rake-IDs of all the leaf vertices are less

than or equal to 1.

Procedure CutSubtree(n, numToCut)
numSelected ← 0
adopteeList ← Ø
adoptorList ← Ø

while numSelected < numToCut do
kid ← n
FOUND ← false

repeat
kid ← the last child of kid
if kid has a neighobor in the next subtree and NODkid ≤ numToCut – numSelected

then
FOUND ← true
adoptorList ← adoptorList ∪ {kid}
adoptorList ← adoptorList ∪ {the neighbor in the next subtree}
numSelected ← numSelected + NODkid

endif
until FOUND

end while
return adopteeList, adoptorList

end procedure

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013 2185

Copyright ⓒ 2013 KSII

2. The maximum values of i in the rake-IDs in subsidiary, s1, is not greater than the

maximum value of i in subsidiary s2, if s1 > s2.

3. In the maximum level of a subsidiary, the values of j are consecutive starting from 1.

The second property implies that the maximum level of a subsidiary is not greater than the

maximum level of the preceding subsidiaries. Also, the third property implies that the leaf

vertices at the maximum level are gathered at the left side whereas other leaf vertices are

gathered at the right side. On the whole, unlike general rake tree, a balanced rake tree always

has the same boundary as the HRTT.

In order to build a balanced rake tree, the following process is added at the last movement

phase of the rake tree scheme:

1. At the start of the movement phase, each node u can verify whether its rake-ID (ku, iu,

ju) is included in the balanced rake tree where u denotes the node. Specifically speaking,

if iu is greater than imax, which is the maximum value of i in the subsidiary, then it is not

included in the balanced rake tree and the node is referred as an unfit node. imax can be

derived from the total number of sensor nodes in the subsidiary.

2. If a node recognizes itself as an unfit node, it determines its alternative vertex in the

balanced rake tree rather than the original one. The alternative target position is the

position of the last rake-ID (ku, il, jl) in the balanced rake tree, which is most probably

not assigned to any node. il is the same as imax. jl is the biggest value of j among the

rake-IDs with il in the subsidiary. jl also can be derived from the number of sensor

nodes in the subsidiary.

3. Once the alternative vertex is determined, the unfit node moves to the position

corresponding to the alternative vertex and checks if the position is already occupied by

another sensor node by exchanging messages.

4. If the position is already occupied, it then moves to the position corresponding to the

vertex of the next rake-ID. The next rake-ID is (ku, il, jl – 1) or (ku, il – 1, il – 1) if jl = 1.

If the next position is also occupied, it continues to move to the next position until an

unoccupied position is encountered.

The balanced rake tree creates the vertices to be as many as the sensor nodes allocated in

the subsidiary. As the unfit nodes are not assigned with rake-IDs that are within the balanced

rake tree, the same number of unassigned rake-IDs must exist in the balanced rake tree as the

unfit nodes. Thus, all the unfit nodes eventually succeed in finding unoccupied positions.

Even though the balanced rake tree scheme presents a simple and effective solution to

build a balanced rake tree, it may fail to do so if the root node fails to group its descendants

with the exact number of sensor nodes. In such a case, the unfit nodes cannot move to another

subsidiary with this scheme. The final layout can have the subsidiaries with unbalanced sizes

while each of the subsidiaries is perfectly balanced on its own.

5.3 Rake-ID Space Scheme

In order to solve the matching problem, the rake-ID space scheme takes a different

approach from the rake tree and balanced rake tree schemes. Instead of transforming the base

tree into a rake tree, rake-ID space scheme divides the balanced rake tree so that the divided

parts can be exactly matched to subtrees of the base tree. A rake-ID space is used to represent

a group of vertices that are adjacent in a balanced rake tree. It deals with vertices rather than

rake-IDs to facilitate geometrical operations such as division into subspaces of adjacent

vertices and extraction of a single vertex from a rake-ID space to be matched to a sensor node.

2186 Ghim et al.: Autonomous Deployment in Mobile Sensor Systems

Rake-ID space exploits the geometrical relationships between vertices in a balanced rake

tree to represent them with a limited number of variables. Therefore, by adopting rake-ID

space, a group of vertices can be represented with only a constant amount of memory and can

be transmitted with only a short message.

5.3.1 Rake-ID Space

A rake-ID space describes the adjacent vertices of the balanced rake tree that can reside on

more than one of consecutive subsidiaries. An example of a rake-ID space of all vertices in a

balanced rake tree except the root vertex is shown in Fig. 8. The subsidiaries are separated

from the original balanced rake tree and put next to each other in the rake-ID space. Each

subsidiary is shown as dots arranged in a triangle where each dot represents a vertex in the

balanced rake tree. A rake-ID space can have an uneven bottom, as shown in Fig. 9. The dots

at the lowest level of a rake-ID space represent the leaf vertices of the balanced rake tree.

Following the definition of a balanced rake tree, the dots at the lowest level are poised at the

left-most side of the bottom.

Fig. 8. An example of a rake-ID space of 105 vertices

Fig. 9. A rake-ID space of 148 vertices divided into subspaces of 48, 94, and 6 vertices,

respectively

A rake-ID space can be divided into several subspaces with vertical walls, as shown in Fig.

9. Each subspace is transmitted to a sensor node for matching the included vertices to its

descendants. The division of a rake-ID space should produce the given number of subspaces

according to the number of children of the current sensor node. Each of the subspaces should

have the given number of vertices according to the number of descendants of each child. So, in

order to divide a rake-ID space into subspaces with an arbitrary number of vertices, vertical

walls can be bent in the middle. In the case of Fig. 10a, the rake-ID space of 70 vertices is

divided into two subspaces of 43 and 27 vertices respectively by bending the vertical wall in

the middle. After a rake-ID space is given to a sensor node, the sensor node can take a vertex

from the top of the rake-ID space to match itself, as shown in Fig. 10b. If there is more than

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013 2187

Copyright ⓒ 2013 KSII

one vertex in the top level, the left-most one is taken, as shown by the second subspace of Fig.

10c.

(a) A rake-ID space divided

into subspaces of 43 and 27

vertices respectively

(b) A vertex taken from each

subspace

(c) A vertex taken from each

subspace after additional

division

Fig. 10. A rake-ID space of 148 vertices divided into subspaces of 48, 94, and 6 vertices,

respectively

Fig. 11. Elements of rake-ID space

Fig. 12. Position of vertical walls

A rake-ID space can be denoted with a 10-element vector RIS = (LS, RS, LB, LX, RB, RX,

TB, TX, BB, BX) as depicted in Fig. 11. The meaning of each element is described as follows.

LS and RS are the left-most subsidiary and right-most subsidiary that the vertices in the

rake-ID space resides on. LB and RB are positions of the left wall in the left-most subsidiary

and the right wall in the right-most subsidiary. LX and RX are the numbers of excluded vertices

among the left-most and right-most vertices, which are included in other rake-ID spaces. TB

and BB are the top level and bottom level respectively. TX is the number of excluded vertices

among top-level vertices, which are the rake-IDs already taken. Lastly, BX is the number of

excluded vertices among the bottom-level vertices. With LB and RB, the position of a vertical

wall is specified as shown in Fig. 12 with respect to the bottom level even if there are no

vertices in the bottom level.

A rake-ID space can be created, given the number of vertices. At the time of creation, a

rake-ID space contains six subsidiaries. For example, a rake-ID space created with 105

vertices, as shown in Fig. 8, has LS = 1, RS = 6, LB = 0, LX = 0, RB = 11, RX = 0, TB = 1, TX =

2188 Ghim et al.: Autonomous Deployment in Mobile Sensor Systems

0, BB = 6, and BX = 18. LS = 1 and RS = 6 represent that six subsidiaries are contained in the

rake-ID space. RB = 11 represents the position of the right-most vertices in the sixth subsidiary

with respect to the bottom level, which, in this case, has no vertex according to the value of

BX.

5.3.1 Matching with the Rake-ID Space Scheme

The rake-ID space scheme also employs the divide-and-conquer strategy in the matching

phase. At each sensor node, given with a rake-ID space, the rake-ID space is divided into

subspaces to be given to the children of the sensor node.

At first, the root node matches itself to rake-ID (0, 0, 1) and creates a rake-ID space, RIS,

with the total number of its descendant sensor nodes. RIS contains the vertices of a rake tree

that are equivalent to the target HRTT except for the root vertex. Then, the root node sends

HRTT and RISc to its cth child. Each sensor node n that received HRTT and RISn takes a

rake-ID from RISn and modifies RISn into RISn'. Then, it divides RISn' and sends the subspaces

to its children. Eventually, all sensor nodes get their rake-IDs from the rake-ID spaces, which

match them to vertices in the target layout.

In the rake-ID space scheme, node n matches its children as follows:

1. Node n except the root node takes a rake-ID (k, i, j) from RIS, which turns it into RIS'

and matches itself to the rake-ID (k, i, j). The root node takes a rake-ID (0, 0, 1).

2. Node n divides RIS' into subspaces RIS1, RIS2, …, RISg which have Nc1, Nc2, …, Ncg

vertices respectively where g is the number of children of node n; c1, c2, …, cg are the

children of node n, sorted with respect to the angles around node n; and Nc1, Nc2, …, Ncg

are the numbers of descendants of c1, c2, …, cg.

3. Node n sends RISi to each child ci.

Once all sensor nodes, including the leaf nodes, are matched to their rake-IDs, the matching

phase is complete.

6. Performance Evaluation

The performance of the tree-based approach adopting an HRTT layout model with three

matching schemes is evaluated using the Matlab simulator [25]. Total area of coverage,

average moving distance per sensor node, and gain of coverage per unit moving distance are

measured. For comparison, VEC, VOR, and Minimax are also evaluated with the same

environment [3]. The number of iterations of VEC, VOR, and Minimax is limited to 100, over

which the coverage area is not notably improved. We set the sensing range (RS) to 11.547m

and the minimum communication range (RC) to 20m (= √3 ∙ RS).

Examples of the final layout of several deployment schemes are shown in Fig. 13. These

had 100 sensor nodes and the same initial layout within 2,500m
2
. In the example results, VOR

shows an irregular pattern even bearing small holes inside and the movement of the sensor

nodes is still ongoing even after 100 iterations. In contrast, the tree-based approach with the

rake tree scheme shows a partially optimal layout with an irregular boundary. Moreover, the

tree-based approach the adopting balanced rake tree and rake-ID space schemes accomplished

the optimal layout.

Fig. 14 and Fig. 15 compare the total area of coverage of the final layouts. In Fig. 14, the

area of initial layout is fixed as 2,500m
2
 and 10,000m

2
 whereas the number of sensor nodes

varies. On the other hand, Fig. 15 shows the total area of coverage with 100 sensor nodes

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013 2189

Copyright ⓒ 2013 KSII

whereas the area of initial layout varies. The coverage area of the tree-based approach

adopting the rake-ID space scheme (denoted as RSpace in the graphs) is actually equal to the

optimal coverage that is accomplished with HRTT. This attests that it successfully deploys the

sensor nodes into the target layout. By the way, when the area of initial layout is 10,000m
2
 and

the number of sensor nodes is below 100, the balanced rake tree scheme (denoted as BRake in

the graph) shows lower coverage than the rake-ID space scheme. This is because the root node

has failed to exactly adjust the number of descendants for each child to the number of vertices

in the subsidiary to be matched due to the lack of connectivity.

(a) VOR

(b) rake tree scheme

(c) balanced rake tree scheme

(d) rake-ID space scheme

Fig. 13. Examples of deployment result

The tree-based approach adopting the rake tree scheme (denoted as Rake in the graph)

results in lower coverage than the balanced rake tree and rake-ID space schemes. For fairness,

we did not take into account the area covered by sensor nodes that moved out of the target

HRTT as well as their moving distance. Therefore, the final layouts of the rake tree scheme

that constructs unbalanced rake trees have smaller coverage areas than the other matching

2190 Ghim et al.: Autonomous Deployment in Mobile Sensor Systems

schemes of the tree-based approach even though there are exactly the same number of sensor

nodes actually covering the same area. In spite of that, all the tree-based approaches cover

more area than the final layouts of VEC, VOR, and Minimax when the area of initial layout is

below 2,500m
2
. The coverage area of the rake tree scheme gets lower when the area of initial

layout is larger or the number of sensor nodes is smaller. This is because the unbalance of the

rake trees becomes more severe when the density and the degree of connectivity become lower

in the initial layout.

(a) initial layout of 2,500m
2
 area

(b) initial layout of 10,000m
2
 area

Fig. 14. Coverage area of the final layout depending on number of sensor nodes

Fig. 15. Coverage area of the final layout

depending on initial layout areas

Fig. 16. Coverage gain per movement

In contrast to the tree-based approach, VEC, VOR, and Minimax fail to disperse the sensor

nodes until they cover the maximum area. Their coverage areas do not sufficiently increase as

much as the number of sensor nodes or iterations increases. In addition, they get relatively less

coverage area when the number of sensor nodes is larger or the initial layout is smaller.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013 2191

Copyright ⓒ 2013 KSII

Accordingly, we can find that VEC, VOR, and Minimax are not efficient for concentrated or

dense initial layout.

To estimate how efficiently the sensor nodes move with each scheme, the improvement of

coverage area per unit distance of movement is shown in Fig. 16. Overall, the rake tree,

balanced rake tree, and rake-ID space schemes work more efficiently than VOR and Minimax.

This is because, in VOR and Minimax, the sensor nodes inside fluctuate until the sensor nodes

outside move further outward and make room for other sensor nodes to move to. VEC works

more efficiently than any other schemes only by moving a small distance rather than enlarging

the coverage area.

7. Conclusion

In the sensor networks, the deployment has a critical effect on the performance and lifetime.

However, existing deployment methods do not successfully address the important issues of

building the optimal final layout or minimizing the energy consumption for the sensor

movement. In this paper, a novel approach, namely a tree-based approach, is proposed to

better address such issues. In the tree-based approach, we separated the modeling of the target

layout from the deployment problem. Therefore, diverse sets of requirements for sensor

networks can be embraced without changing the deployment scheme. Moreover, we defined a

hexagonal-boundary regular triangular tessellation (HRTT) layout model. It covers the

maximum area with a given number of sensor nodes while preserving robust connectivity

when RC ≥ √3 ∙ RS.

At first, tree-based approach for deployment problem builds a spanning tree, called base

tree. Through the base tree, the global informations about the initial layout of the sensor

network are collected and used for realization of the specified layout model, which determines

the target layout. Then, tree-based approach attempts to match each sensor node to a vertex in

the target layout with divide-and-conquer strategy. The sensor nodes can determine their target

positions with the matched vertices and find the shortest routes to the target positions which

consume minimum energy. Once all the sensor nodes move along the shortest routes and

arrive at the target positions, the target layout is exactly achieved as determined from the

layout model.

For the tree-based approach, we also proposed three simple and effective matching

schemes: rake tree scheme, balanced rake tree scheme, and rake-ID space scheme. They

match sensor nodes to the vertices in the layout. The proposed matching schemes guarantee to

achieve the target layout, whereas previous works do not. In addition, these schemes result in

smaller energy consumption than previous works.

In this paper, we suggested a new perspective on the sensor network deployment problem,

which can be viewed as a minimum-weight complete matching problem. With this perspective,

further study on that problem may reveal a better matching scheme. In addition, the update of

sensor nodes after first deployment is also an interesting issue. Therefore, we will deeply

handle the update method of sensor nodes on the further study. Lastly, we will also conduct the

systematical analysis of our proposed schemes for the future work.

References

[1] V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks: challenges, design principles,

and technical approaches,” IEEE Trans. on Industrial Electronics, vol. 56, no. 10, pp. 4258–4265,

2192 Ghim et al.: Autonomous Deployment in Mobile Sensor Systems

2009. Article (CrossRef Link)

[2] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization based on virtual forces,” in

Proc. of INFOCOM 2003, vol. 2, pp. 1293–1303, 2003. Article (ieeexplore Link)

[3] G.Wang, G. Cao and T. L. Porta, “Movement-assisted sensor deployment,” IEEE Trans. on Mobile

Computing, vol. 5, no. 6, pp. 640–652, 2006. Article (CrossRef Link)

[4] N. Heo and P. Varshney, “Energy-efficient deployment of intelligent mobile sensor networks,”

IEEE Trans. on Systems, Man and Cybernetics, vol. 35, no. 1, pp. 78-92, 2005. Article (CrossRef

Link)

[5] M.-l. Lam and Y.-h. Liu, “ISOGRID: an efficient algorithm for coverage enhancement in mobile

sensor networks,” in Proc. of IROS 2006, pp. 1458–1463, 2006. Article (ieeexplore Link)

[6] G. Song, W. Zhuang and A. Song, “Self-deployment of mobile sensor networks in complex indoor

environments,” in Proc. of WCICA 2006, vol. 1, pp. 4543–4546, 2006. Article (ieeexplore Link)

[7] M. Ma and Y. Yang, “Adaptive triangular deployment algorithm for unattended mobile sensor

networks,” IEEE Trans. on Computers, vol. 56, no. 7, pp. 946–847, 2007. Article (CrossRef Link)

[8] G. Tan, S. Jarvis and A.-M. Kermarrec, “Connectivity-guaranteed and obstacle-adaptive

deployment schemes for mobile sensor networks,” IEEE Trans. on Mobile Computing, vol. 8, no.

6, pp. 836–848, 2009. Article (CrossRef Link)

[9] S. Yang, M. Li and J.Wu, “Scan-based movement-assisted sensor deployment methods in wireless

sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 8, pp.

1108–1121, 2007. Article (CrossRef Link)

[10] P.-C. Wang, T.-W. Hou and R.-H. Yan, “Maintaining coverage by progressive crystal-lattice

permutation in mobile wireless sensor networks,” in Proc. of ICSNC 2006, pp. 42–42, 2006.

Article (ieeexplore Link)

[11] X. Yu, W. Huang, J. Lan and X. Qian, “A novel virtual force approach for node deployment in

wireless sensor network,” in Proc. of DCOSS, pp. 359–363, 2012. Article (ieeexplore Link)

[12] M.-l. Lam and Y.-h. Liu, “Heterogeneous sensor network deployment using circle packings,” in

Proc. of ICRA 2007, pp. 4442–4447, 2007. Article (ieeexplore Link)

[13] G. M. Hoffmann and C. J. Tomlin, “Mobile sensor network control using mutual information

methods and particle filters,” IEEE Trans. on Automatic Control, vol. 55, no. 1, pp. 32–47, 2010.

Article (CrossRef Link)

[14] M. Zhao and Y. Yang, “Optimization-Based Distributed Algorithms for Mobile Data Gathering in

Wireless Sensor Networks,” IEEE Trans. on Mobile Computing, vol. 11, no. 10, pp. 1464–1477,

2012. Article (CrossRef Link)

[15] R. V. Kulkarni and G. K. Venayagamoorthy, “Particle swarm optimization in wireless-sensor

networks: A brief survey,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 41, no. 2, pp.

262–267, 2011. Article (CrossRef Link)

[16] G. A. Montoya, C. Velasquez-Villada and Y. Donoso, “Energy optimization in mobile wireless

sensor networks with mobile targets achieving efficient coverage for critical applications,”

International Journal of Computers Communications & Control, vol. 8, no. 2, pp. 247–254, 2013.

Article (ijccc Link)

[17] M. Bui, F. Butelle and C. Lavault, “A distributed algorithm for constructing a minimum diameter

spanning tree,” Journal of Parallel and Distributed Computing, vol. 64, no. 5, pp. 571 – 577, 2004.

Article (CrossRef Link)

[18] F. Dressler, “A study of self-organization mechanisms in ad hoc and sensor networks,” Computer

Communications, vol. 31, no. 13, pp. 3018 – 3029, 2008. Article (CrossRef Link)

[19] A. Nayak and I. Stojmenovic, “Wireless Sensor and Actuator Networks: Algorithms and Protocols

for Scalable Coordination and Data Communication,” Wiley, 2010. Article (CrossRef Link)

[20] X. Bai, D. Xuan, Z. Yun, T. H. Lai and W. Jia, “Complete optimal deployment patterns for

full-coverage and k-connectivity (k ≤ 6) wireless sensor networks,” in Proc. of MobiHoc 2008, pp.

401–410, 2008. Article (ACM Link)

[21] B. Wang, “Coverage Control in Sensor Networks,” Computer Communications and Networks,

Springer, 2010. Article (CrossRef Link)

[22] X. Bai, Z. Yun, D. Xuan, T. Lai and W. Jia, “Optimal patterns for four connectivity and full

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013 2193

Copyright ⓒ 2013 KSII

coverage in wireless sensor networks,” IEEE Trans. on Mobile Computing, vol. 9, no. 3, pp.

435-448, 2010. Article (CrossRef Link)

[23] P. Vaidya, “Geometry helps in matching,” in Proc. of STOC 1988, pp. 422–425, 1988. Article

(SIAM Link)

[24] H. Ghim, N. Kim, D. Kim, M. Choi and H. Yoon, “An energy-efficient dispersion method for

deployment of mobile sensor networks,” IEICE Electronics Express, vol. 7, no. 10, pp. 722–727,

2010. Article (CrossRef Link)

[25]

Hojin Ghim received the B.S. degree in Computer Engineering from Hongik

University, Korea, in 2002, and the M.S. degree and the Ph.D. degree in Computer

Science from KAIST in 2004 and 2010, respectively. Since 2010, he has been a

software engineer of LG Electronics. His research interests include mobile networks

and mobile user interaction.

Dongwook Kim received his B.S. degree in the Information and Computer

Engineering from AJOU University, South Korea, in 2002 and his M.S. and Ph. D.

degrees in the Computer Science from KAIST, South Korea, in 2004 and 2009,

respectively. Since 2009, He is a senior engineer at the Network Business Division,

Samsung Electronics. His research interests include the design and optimization of

LTE (Long Term Evolution)-advanced systems with SON (Self-Organizing

Networks) technologies, optimal deployment of mobile sensor networks, broadcast

techniques for sensor networks, and optimal handover schemes for 4G mobile

systems.

Namgi Kim received the B.S. degree in Computer Science from Sogang University,

Korea, in 1997, and the M.S. degree and the Ph.D. degree in Computer Science from

KAIST in 2000 and 2005, respectively. From 2005 to 2007, he was a research member

of the Samsung Electronics. Since 2007, he has been a faculty of the Kyonggi

University. His research interests include sensor system, wireless system, and mobile

communication.

