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Abstract 
 

A new optimal scheme based on curvelet transform is proposed for retinal image enhancement 

(RIE) using real-coded quantum genetic algorithm. Curvelet transform has better performance 

in representing edges than classical wavelet transform for its anisotropy and directional 

decomposition capabilities. For more precise reconstruction and better visualization, curvelet 

coefficients in corresponding subbands are modified by using a nonlinear enhancement 

mapping function. An automatic method is presented for selecting optimal parameter settings 

of the nonlinear mapping function via quantum genetic search strategy. The performance 

measures used in this paper provide some quantitative comparison among different RIE 

methods. The proposed method is tested on the DRIVE and STARE retinal databases and 

compared with some popular image enhancement methods. The experimental results 

demonstrate that proposed method can provide superior enhanced retinal image in terms of 

several image quantitative evaluation indexes. 
 

 

Keywords: Retinal image enhancement, quantum genetic algorithm, sparse representation, 

curvelet 
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1. Introduction 

The retina is an important field in the medical treatment of pathologies [1-4]. By observing 

the tortuosity changes of blood vessels in the retina, clinicians can diagnose many diseases, 

among them hypertension, arteriosclerosis, and blindness caused by diabetes, and collect and 

analyze retinal symptoms in order to develop relevant treatments [2]. It is thus very important 

for the clinicians to be able to clearly detect, appreciate and recognize the lesions among the 

numerous capillary vessels and optic nerve present in the image. However, the retinal images 

acquired with a fundus camera often have low gray level contrast and dynamic range. This 

problem may seriously affect the diagnostic procedure and its results, because lesions and 

vessels in some areas of the field of view (FOV) are hardly visible to the eye specialist.  

    It is no doubtless that image enhancement is a necessary preprocessing step if the original 

retinal image is not a good candidate for the clinicians [6-9]. Currently, most researchers 

focused on the retinal image segmentation [1-5, 10-14]. Little work has been carried out in the 

aspect of retinal image enhancement. 

    To improve the retinal image’s quality, several techniques have been proposed [6-9].The 

classic one is Histogram Equalization. More complex methods such as Local Normalization 

[3], matched filters method [13], Adaptive Histogram Equalization [14], and Lapacian method 

have been proposed to enhance contrast [15]. It is a pity that Local Normalization amplifies the 

noise strongly and has bad visual results. The matched filters methods are better at enhancing 

local contrast, especially for blood vessel in a small area, but for the whole image, the 

computation is very difficult due to needing many matched filters [8,13].  

    In the last decade, wavelet transform has been widely used in the medical image processing 

[17-21]. Fu [17,18] proposed a wavelet-based histogram equalization to enhance sonogram 

images. Laine used wavelet transform to enhance the microcalcifications in mammograms 

[19]. Wavelet transform is a type of multiscale analysis (MGA) that decomposes input signal 

into high frequency detail and low frequency approximation components at various 

resolutions [8]. To enhance features, the selected wavelet high frequency coefficients are 

multiplied by an adaptive gain value. The image is then enhanced by reconstructing the 

modified wavelet coefficients.  

It is known that wavelet has good performance at representing point singularities [20]. The 

traditional orthogonal wavelet transform has wavelets with chiefly vertical, chiefly horizontal 

and chiefly diagonal orientations [21]. Unluckily, in higher dimensions because wavelet 

neglects the geometric properties of objects with edges and does not explore the regularity of 

the edge curves, which could not generate satisfying results.  

Therefore, Signal Sparse Representation Theory (SSRT) has been developed rapidly in 

recent years [21-25]. Sparse representation is based on the idea that a signal can be constructed 

as a linear combination of atoms from a dictionary, where the number of atoms in the 

dictionary is larger than the signal dimension. The hybrid dictionary can be constructed by 

integrating the multiscale Gabor functions, wavelets, libraries of windowed cosines with a 

range of different widths and locations, and multiscale windowed ridgelets etc. Several 

SSRT-based approaches have been proposed, such as ridgelet, curvelet and bandelet etc. 

[26-29], and some methods based on spectral clustering [24, 25]. Li et al. successively 

proposed two unsupervised feature selection algorithms, Nonnegative Discriminative Feature 

Selection (NDFS) [24] and Clustering-Guided Sparse Structural Learning (CGSSL) [25], 

which are both relied on spectral clustering, for cutting down data dimensionality. In NDFS, 
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discriminative information is efficiently handled through the joint learning of nonnegative 

spectral analysis and linear regression with 2,1 -norm regularization [24]. CGSSL which is 

superior to NDFS integrates nonnegative spectral clustering and sparse structural analysis into 

a joint framework [25]. Li and Yang studied a multifocus image fusion method based on 

curvelet and wavelet transform by considering the complementary property of the two 

different multiresolution analysis method [26]. Candès et al. proposed two novel discrete 

curvelet transforms for the second-generation curvelets in two and three dimensions, which is 

widely applied in image processing including denoising and also is simpler, faster, and less 

redundant [27]. Mandal et al. probed into a novel face recognition method by using curvelet 

transform and different dimensionality reduction tools, which is an earlier exploration of 

curvelet subspaces [28]. Fu and Zhao proposed an infrared and visible images fusion method 

by using the second generation curvelet transform, in which low and high frequency subband 

coefficients were processed [29]. Different from the previous work[26-29], we exploit a fresh 

retinal image enhancement method combined curvelet transform and quantum genetic 

algorithm. Meanwhile, another difference is optimization method is proposed to find optimal 

parameters which is used in image enhancement to improve the texture of retinal image. 

    In this paper, we present a novel automatic retinal image enhancement approach based on 

the second-generation curvelet transform and real-coded guantum genetic algorithm. Herein, 

the real-coded quantum genetic algorithm is used to choose the appropriate parameters of the 

nonlinear mapping function. The image fusion method is used to reduce the effect of Gibbs 

phenomenon. We finally combine quantitative assessment and visual evaluation to test the 

performance of the proposed method. The experimental results show encouraging 

improvement and achieve better visual quality than other state-of-the-art methods such as 

Local Normalization (LN) [3] , Adaptive Histogram Equalization (AHE) [13] , Laplacian [14] 

and DWT [17-19] methods. 

This paper is organized as follows. Section 1 gives a brief review of the current retinal 

image enhancement techniques. Section 2 describes the second-generation curvelet transform. 

Section 3 gives out the retinal enhancement algorithm based on curvelet transform. Section 4 

presents an automated method for selecting optimal parameter settings of the nonlinear 

mapping function via quantum genetic search strategy. The experimental results and 

performance evaluation on two well-known databases are given in Section 5. The last section 

summarizes the paper and the conclusions are drawn finally. 

2. Second-generation Curvelet Transform 

Candès et al. proposed the second-generation curvelet transform in 2006 [27]. Curvelet 

transform is a new sparse representation suited for objects which are smooth away from 

discontinuities across curves. Curvelet differs from wavelet and related systems, and it takes 

the form of basis elements, which exhibit a very high directional sensitivity and are highly 

anisotropic [26]. In this section, we briefly review the implementation of the 

second-generation curvelet transform which is simpler, faster, and less redundant [26,27].  

Assume that we work throughout in two dimensions, i.e., R
2 
.  Denote x as spatial variable, 

denote ω as a frequency domain variable, and with r and θ polar coordinates in the frequency 

domain [26-29].We define a pair of windows W(r) and V(t), called the “radial window” and 

“angular window”. The frequency window Uj is defined in the Fourier domain by: 

 

)
2

2
()2(2),(

2/
4/3






j
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where            is the integer part of  j/2 . 

    We can define a “mother” curvelet as )(xj , Its Fourier transform )()(ˆ  jj U ,  then 

all curvelets at scale 2
−j

 are obtained by translations and rotations of j̂ .  

Introduce the equispaced sequence of rotation angles  2/
22

j
l


  ( with l= 0, 1, 2…, 

 20  ) and the sequence of translation parameters 2
21 ),( zkkk  .   

Then the curvelets at orientation l , scale 2
−j

 and position can be defined as follows: 

)]([)( ),(
,,

lj
kjklj xxRx

l
                                               (2) 

where R  is the rotation by radians and its inverse 1
R . The curvelet transform and the 

curvelet transform in the frequency domain are defined as follows: 
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    Fig. 1 shows curvelet spatial domain and frequency domain.  
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Fig. 1. Curvelet spatial domain and frequency domain 
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where      is the shear matrix :  

 

 

    Then the discrete curvelet transform is defined as follows: 
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where )2,2( 2/
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The discrete curvelet transform is invertible. In this paper, we use fast discrete curvelet 

transform (FDCT) via wrapping [27]. Please refer to [27] for details. 
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3. Retinal Image Enhancement via Curvelet Transform 

Fig. 2 displays a schematic diagram for the proposed enhancement scheme. 

 

 
Fig. 2. A schematic diagram for the retinal image enhancement 

3.1. Retinal Image Preprocessing 

The retinal images captured from camera need to be transformed from RGB to grayscale [8, 

10-16]. The green channel of colour retinal images formatted as an RGB image gives the 

highest contrast between vessels and background, thus this channel is a good choice for 

contrast enhancement. We first extract the green channel of retinal images. Fig. 3 shows a 

colour retinal image, the three channel and their histograms, respectively. It is easily to show 

that blue and red channels are either too dark or too bright. 

 

   

 
                     (a)                                     (b)                                  (c)                                  (d) 

Fig. 3. Top: The colour retinal image and its component of each channel, bottom: corresponding 

histogram of the four images. (a)The colour retinal image;(b)Red channel;(c)Green Channel;(d)Blue 

Channel 
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3.2. Curvelet Decomposition 

In this stage, the grayscale retinal image will be decomposed by using digital curvelet 

transform.      

Here we use five scales of decomposition for curvelet transform [26]. Assume that G  

represents a retinal image sample. G  is decomposed by curvelet transform into curvelet 

coefficients C. Assume that lkC ,  represents the kth scale and lth orientation of the curvelet 

coefficients C, where k={1,2,3,4,5}.  Here l = 1 when k = 1. l ={1, . . . ,8} when k = 2. l = 

{1, . . . ,16} when k = 3 or k = 4. l = {1, . . . ,32} when k = 5. 

Fig. 4 shows an example of the frequency decomposition achieved by curvelet transform. It 

depicts the curvelet coefficients of one retinal image using five scales of decomposition and 

1,8,16,16,32 directions. 

 
Fig. 4. Curvelet coefficients of one retinal image(5 scales; 1,8,16,16,32 directions) 

3.3. Nonlinear Mapping Function 

   To modify the high frequency coefficients lkC ,  (k={2,3,4,5}), we propose a nonlinear 

mapping enhancement function as follows. 
























lklk

lklk

tu
bcsigmbcsigm

bucsigmbucsigm
k

tu
bcsigmbcsigm

bucsigmbucsigm
k

uMAG

,,2

,,1

when  ,
))1(())1((

))(())((

when  ,
))1(()1((

))(())((

)(                  (7) 

where 101.0  b , 201  c , 4.01.0 1  k , 16.0 2  k .  

    Here lkt ,  is the threshold. )(usigm  is the sigmoid function: )1/(1)(  ueusigm . 

   The threshold value lkt , can be calculated by [21]:   

2
,

2
, /)( lknkl kt                                                             (8) 
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where )(2 kn  is the noise variance at the scale k, 2
,lk  is the signal variance of the 

coefficients lkC , . 

   )(kn  and 2
,lk  are defined as follows: 

6745.0
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where qp  is the size of the coefficients lkC , . 

   Fig. 5 shows a plot representing the nonlinear mapping function. The parameters are 4.0b , 

10c , 4.01 k , 8.02 k . The threshold 3.0, lkt . 
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Fig. 5. The nonlinear mapping function 

 

3.4. Retinal Image Fusion 

By successively performing the inverse curvelet transform to the modified coefficients at the 

decomposition subbands , the enhanced retinal image GI can be reconstructed.  

   A worry for the proposed scheme is that the effect of Gibbs phenomenon. We use an image 

fusion method to reduce the effect [26]. Here we use the minimum fusion rule. 
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where G is the original image , G’ is the fused retinal image.  

Fig. 5 shows for the enhanced retinal image GI and the fused retinal image G’. The image of 

Fig. 6(a) has annular shadow. In Fig. 6(b), the annular shadow has been removed. 
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 (a)                                      (b) 

Fig. 6. a)The enhanced retinal image; b)The fused retinal image 

4. Multi-objective Optimization Model For Nonlinear Contrast 
Enhancement 

In this section, an automatic method is presented for selecting optimal parameter settings of 

the nonlinear mapping function via real-coded quantum genetic search strategy. Firstly, we 

construct a multi-objective optimization model for nonlinear contrast enhancement based on 

retinal image quality measures. Then we use real-coded quantum genetic algorithm (RCQGA) 

to solve the optimization problem. 

4.1 Retinal Image Quality Measures 

(1)Entropy 

Entropy is known to be a measure of the amount of uncertainty about the image. It is given by 







1

0

2log
L

i

ii ppH                                                   (12)  

where L  is the number of graylevels and note that 

  
number of pixels of each graylevel

number of pixels in the image

i

i

D i
p

D
                               (13) 

Larger H value indicates the better enhancement result. 

(2)Spatial Frequency (SF) 

Spatial frequency (SF) is defined as: 

                
22 CFRFSF                                                      (14) 

where RF and CF are the row and column frequencies and defined as: 
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where G is an image with size of nm  pixels. nm  is the image size. Larger SF value 

indicates the better enhancement result. 

(3) Root Mean Square Error 

Root mean square error (RMSE) is used to evaluate the effect of retinal image enhancement.  

RMSE is defined as: 

nm

jiGjiG

RMSE

m

i

n

j








 1 1

2' )],(),([

                          (17)   

where nm  is the image size, G and G’ are the original image and enhanced image 

respectively, with size of nm  pixels. Larger RMSE value indicates the better image quality. 

(4) Peak Signal to Noise Ratio (PSNR) 

Peak signal to noise ratio (PSNR) is defined as: 

        )

1 1

2],',[/(255lg(10 
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Larger PSNR value indicates the lower noise. 

(5) Structural Content (SC) 

Structural content (SC) is defined as: 
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jiGjiGSC                                         (19) 

A smaller SC value is preferred. 

4.2 Multi-objective Optimization Model for Nonlinear Contrast Enhancement 

A multi-objective optimization model for nonlinear contrast enhancement is as follows. 

                                         Objective:   

Maximum        H                                                                        (20) 

Maximum       SF                                                                        (21) 

Maximum     RMSE                                                                    (22) 

                                          Subject to:                       

                                                    0 01 1. b  , 1 0 20. c   

                                                         10 1 0 4. k .  , 20 6 1. k                         

4.3 Real-coded Quantum Genetic Algorithm (RCQGA)   

Quantum genetic algorithm (QGA) is a probabilistic searching algorithm which exploits the 

power of quantum computation in order to accelerate genetic procedures [32-34]. The smallest 

unit of information stored in two-state quantum computer is called a quantum bit, which may 

be in the 1 state, or in the 0 state, or in any superposition of the two [35]. The state of a 

quantum bit can be represented as: 

10 βαψ                                                                (23)  

where 1
22
 βα . α and β are complex numbers that specify the probability amplitudes of 

the corresponding states. 
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   Q-bit representation has the advantage that it is able to represent a linear superposition of 

states [32-35].A Q-bit individual as a string of m Q-bits is defined as: 


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                                                    (24) 

   For update, a quantum rotation gate )( R  is usually adopted in compliance with practical 

optimization problems [32]. 
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where   is the rotation angle of each Q-bit. 

   Real number encoding has been confirmed to have better performance than either binary or 

gray encoding for Multi-parameters optimization problems [35]. Thus we use real-coded 

quantum genetic algorithm (RCQGA) in this paper. 

   RCQGA adopts a multi-bit instead of Q-bit to denote a real number [35, 36]. Randomly 

generate uniformity real number list makes an initial chromosome. 


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where ix  is a real number obeying uniformity. maxmin xxx i  . i  denotes the variable phase 

angle. 
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minmax
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
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                                                       (27) 

So every chromosome's information can be denoted in phase space and real number space at 

one time. 

   Probability crossover and Chaotic mutation are adopted to make the best of Q-bit coherence 

and chaos in the evolutionary process of RCQGA [32-36]. 

   Assume that some or other generation reserve the best individual and phase angle denoted by 

B(s) and )(s . This generation population is denoted by )(sLi , while corresponding phase 

angle is denoted by )(si . Probability crossover is employed to generate the next generation 

[33-35]. 

misss ii  1),()()(                                             (28) 

)(sin)()(cos)()1( 22
iiii sLsBsL                                      (29) 

   We limit disturb currently generation real number chromosome by chaotic sequence Y. Here 

the Logist mapping is used for generate chaotic sequence [35].   
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   Limiting amplitude is adjusted by the fitness value [36]. Suppose we solve the global 

minimal value function, so the disturb sequence amplitude can be denoted by: 

)
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)(iYii                                                                   (32) 

   In this way, we can achieve all population mutation by Eqs. (30) ,(31) and (32) . 

   The fitness function is defined as follows: 

RMSESFHxF  )(                                                    (33) 
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Here  =0.2 and  =0.1. 

   The detailed procedure of RCQGA is described as follows:   

1.Procedure of the RCQGA 

2.Begin 

3.  current generation 1s  

4.  initialize T(s) represent the parameters b,c, 1k  and 2k  

5.  make L(s) by observing the states of T(s) 

6.  calculate fitness function F(x) and evaluate L(s)   

7.  store the best individual among L(s) and its fitness value 

8.  while (not the stopping condition) 

9.    begin 

10.     1 ss  

11.     apply Eqs. (28) and (29) to perform selection and quantum crossover 

12.     apply Eqs. (30) , (31) and (32) to perform chaotic mutation      

13.     calculate fitness function F(x) and evaluate L(s) 

14.     store the best individual among L(s) and its fitness value 

15.   end 

16.output the optimal parameters b,c, 1k , 2k  and the optimal fitness value 

17.End  
 

5. Experimental results 

The experiments are performed on two well-known retinal databases: DRIVE database and 

STARE database. In this paper, five objective evaluation measures, H, SF, RMSE, PSNR, and 

SC which have been proven to be validated specially, are considered to quantitatively evaluate 

the retinal image enhancement performance.       

5.1 Experimental Results from the DRIVE Database 

The DRIVE (Digital Retinal Images for Vessel Extraction) database is a public retinal 

database [37]. The DRIVE database consists of 40 RGB color images of the retina. The images 

are of size 565×584 pixels, 8 bits per color channel, in LZW compressed TIFF format. These 

images were originally captured from a Canon CR5 nonmydriatic 3 charge-coupled device 

(CCD) camera at 45° field of view (FOV), and were initially saved in JPEG-format.  

    The original retinal image (Green channel) and the enhanced images with different 

enhancement methods based on Local Normalization (LN), Adaptive Histogram Equalization 

(AHE), Laplacian, DWT and our proposed methods are shown in Fig. 7. Here we use the 

DWT with the same nonlinear mapping function to compare with the curvelet transform. The 

wavelet transform uses Daubechies bi-orthogonal 4-4 wavelet and a four-level decomposition. 

The objective evaluations on the enhanced results of the proposed method and other 

comparable four approaches for the retinal images are listed in Table 1. We can see from 

Table 1 that the proposed method takes almost all the best objective evaluations (besides the 

SF, RMSE, SC value of HE method), which is obviously better than other four methods.   
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(a)                                  (b)  

    
(c)                                  (d) 

    
(e)                                  (f)     

Fig. 7. Results on an image from DRIVE database: (a) original image, (b) local normalization (LN), 

(c) adaptive histogram equalization (AHE), (d) Lapacian, (e) Wavelet, (f) Curvelet. The parameters are 

0.015b , 19.96c , 0.391 k , 97.02 k . 

We can see that the results of our method exhibit the best visual quality. Fig. 7(b) shows the 
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local normalizaiton enhancement. Fig. 7(b) has a bad visual quality. Fig. 7(c) shows the 

Adaptive Histogram Equalization enhancement. It is a pity that Fig. 7(c) has lower brightness. 

Fig. 7(d) shows the Lapacian enhancement. Fig. 7(d) also has a bad visual quality. Fig. 6(e) 

and (f) show the comparison of wavelet and curvelet transform enhancement. It seems that the 

wavelet is inferior to curvelet, we can see some blood vessels in Fig. 7(f) are more clearer than 

Fig. 7(e). 
Table 1. Quantitative assessments on the DRIVE database 

Methods 
Quantitative assessments 

H(Preferred) SF RMSE PSNR SC 

Original Image 5.8199 10.2146 - - - 

LN 5.9135 12.5019 42.2434 13.7702 1.0964 

AHE 6.2675 12.5483 11.0704 27.2475 1.0895 

Laplacian 4.8110 14.3184 16.0219 24.0365 0.8390 

DWT 6.3029 19.0659 9.4229 28.6471 0.9876 

Curvelet-RCQGA 6.4770 23.9325 16.5974 28.7300 0.9529 

 

Obviously, the curvelet-based method provides the best performance for retinal image 

enhancement. 

5.2 Experimental Results from the STARE Database 

The STARE database is a public retinal database [38]. The retinal images of the STARE 

database were captured using a TopCon TRV-50 fundus camera at 35° FOV, and afterwards 

digitized to 700×605 pixels, 8 bits per color channel. 

The original retinal image (Green channel) and the enhanced images with different 

enhancement methods based on Local Normalization (LN), Adaptive Histogram Equalization 

(AHE), Laplacian, DWT and our proposed methods are shown in Fig. 8.  

The objective evaluations on the enhanced results of the proposed method and other 

comparable four approaches for the retinal images are listed in Table 2.                 

   
(a)                                         (b) 
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(c)                                         (d) 

   
(e)                                         (f) 

Fig. 8. Results on an image from STARE database: (a) original image, (b) local normalization (LN), 

(c) adaptive histogram equalization (AHE), (d) Lapacian, (e) Wavelet, (f) Curvelet. The parameters are 

0.013b  , 19.44c  , 1 0.39k  , 2 0.97k  . 

Table 2. Quantitative assessments on the STARE database 

Methods 
Quantitative assessments 

H(Preferred) SF RMSE PSNR SC 

Original Image 6.8794 9.2934 - - - 

LN 6.7603 25.3664 43.8414 12.0228 0.9712 

AHE 6.8374 13.8646 25.4094 20.0309 1.2312 

Laplacian 5.9765 18.8773 26.1832 19.7703 1.1384 

DWT 7.1407 21.4253 14.4234 24.9495 0.9789 

Curvelet-RCQGA 7.1544 26.3900 20.5331 21.8817 0.9491 

 

From Fig. 8 and Table 2, we can see that the performance of the proposed method is better 

than Local Normalization (LN) [3] , Adaptive Histogram Equalization (AHE) [13] , Laplacian 

[14] and DWT [17-19] methods. The H, SF, PSNR, SC value (4 indexes) of our method are 

better than LN, AHE and Laplacian method. The H, SF, RMSE, SC value (4 indexes) of our 

method is better than DWT method. The results of our method exhibit the best visual quality. 

The blood vessels in Fig. 8(f) are more clearer than LN, AHE, Laplacian and DWT methods. 
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5.3 More Experiments 

In the experiments, we randomly choose 40 retinal images from the DRIVE database and 

STARE database for testing (20 images from DRIVE and 20 images from STARE). In order to 

evaluate the performance of proposed method, we use the statistics data as the final 

experimental result. The results are shown in Table 3. We report the numbers of better value 

obtained by the proposed method than LN, AHE, Laplacian and DWT methods. 

 
Table 3.   Statistics results 

Database 
Statistics data 

Better value  (>=4 indexes) Better value  (=3 indexes) 

DRIVE 18 2 

STARE 15 5 

Total 33 7 

 

For all retinal images, our method is superior to the latter four methods in 3 indexes. For 33 

retinal images, the proposed method is superior to the latter four methods. in 4 indexes. The 

expensive experiments demonstrate that proposed method provides superior enhanced 

performance. 

6. Conclusions 

This paper presents a novel retinal image enhancement approach based on curvelet transform 

and real-coded quantum genetic algorithm. The enhancement process is conducted by fast 

discrete curvelet transform (FDCT) via wrapping. An automatic method is proposed for 

selecting optimal parameter settings of the nonlinear mapping function via quantum genetic 

search strategy. The DRIVE database and the STARE database are used to test the 

performance of the proposed scheme. The experiments demonstrate that the proposed method 

provides superior enhanced image in terms of the pertained image quantitative evaluation 

indexes. However, one weak point of the proposed scheme is that the computation load is a bit 

heavier than wavelet-based methods. 

In conclusion, the proposed approach is a novel attempt to apply curvelet transform for 

retinal image enhancement, and can also be applied to other problems such as medical image 

segmentation, medical image fusion, etc. 
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