DOI QR코드

DOI QR Code

Decision Tree for Likely phoneme model schema support

유사 음소 모델 스키마 지원을 위한 결정 트리

  • Oh, Sang-Yeob (Dept. of Computer Media Convergence, College of IT, Gachon University)
  • 오상엽 (가천대학교 글로벌캠퍼스 IT대학 컴퓨터미디어융합학과)
  • Received : 2013.08.01
  • Accepted : 2013.10.20
  • Published : 2013.10.28

Abstract

In Speech recognition system, there is a problem with phoneme in the model training and it cause a stored mode regeneration process which come into being appear time and more costs. In this paper, we propose the methode of likely phoneme model schema using decision tree clustering. Proposed system has a robust and correct sound model which system apply the decision tree clustering methode form generate model, therefore this system reduce the regeneration process and provide a retrieve the phoneme unit in probability model. Also, this proposed system provide a additional likely phoneme model and configured robust correct sound model. System performance as a result of represent vocabulary dependence recognition rate of 98.3%, vocabulary independence recognition rate of 98.4%.

어휘 인식 시스템에서는 훈련 중에 적용되지 않는 음소에 대한 문제점으로 인해 시스템에 저장된 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 군집화 방법을 사용하여 유사 음소 모델을 관리하는 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 결정트리 군집화 방법을 적용하여 군집화된 모델에서 음소 단위로 확률 모델을 탐색할 수 있는 시스템을 모델링하여 모델의 재생성 과정을 줄이고 강인하고 정확한 음향 모델을 제공한다. 또한, 제안된 시스템의 사용으로 시스템에서 기존에 생성되어진 음향 모델에 추가적으로 유사 음소 모델을 생성하여 제공하므로 음성 인식에 강인한 음향 모델을 구성한다. 본 연구에서 제안된 방법으로 실내 환경에 대하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 실내 환경의 어휘 종속 실험에서는 98.3%의 인식 성능을 보였고, 어휘 독립 실험에서 98.4%의 인식 성능을 보였다.

Keywords