DOI QR코드

DOI QR Code

The Origin and Age of the Orbicular Granite Gneiss in Wangjungri, Muju

무주 왕정리 일대 구상 화강편마암의 성인과 형성시기

  • Oh, Chang Whan (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Lee, Byung Choon (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Yi, Keewook (Devision of Earth and Environmental Sciences, Korea Basic Science Institute)
  • 오창환 (전북대학교 지구환경과학과) ;
  • 이병춘 (전북대학교 지구환경과학과) ;
  • 이기욱 (한국기초과학지원연구원 환경과학연구부)
  • Received : 2013.03.11
  • Accepted : 2013.05.22
  • Published : 2013.06.30

Abstract

Orbicular granite gneisses occur as a xenolith within two-mica leucogranites, together with early Paleoproterozoic metasedimentary xenoliths, in Wangjeong-ri, Muju area. The whole-rock chemistries and SHRIMP zircon Pb/U ages of the leucogranites indicate that they are S-type granitoids formed in the continental tectonic setting at $1875{\pm}75$ Ma. The SHRIMP age of monazites from the orbicular granite gneiss gives $1867{\pm}4$ Ma as a metamorphic age which is similar to the intrusion age of the two-mica leucogranite within the error range. The similar ages between zircons and monazites represent that the orbicular granite gneisses formed by metamorphism during the intrusion of the two-mica leucogranite; the metasedimetary xenoliths which sank within the parent magma of leucogranites were metamorphosed into orbicular granite gneisses by thermal metamorphism ($650-740^{\circ}C$, 4-6.5 kbar) due to the heat supplied from surrounding magma. During the thermal metamorphism, the core of orbicular granite gneiss mainly consisting of cordierite formed, and in some orbicular granitic gneisses, the leucocratic melt formed by melting of quartz and plagioclase in the core, squeezed out from core and crystallized around the core forming outer rim. The hydrothermal fluid at the late stage of magma differentiation penetrated into the orbicular granite gneisses resulting pinitization of cordierite into chlorite and sericite. As Muju orbicula granite gneiss was formed from sedimentary rocks, it is more appropriate to be called Muju orbicula granitic gneiss.

무주군 왕정리 지역에서 구상 화강편마암이 초기 원생대 변성퇴적암류를 관입하는 우백질 복운모 화강암내에 포획체의 형태로 나타난다. 우백질 복운모 화강암의 전암성분 분석치와 SHRIMP 저어콘 연대측정 결과는 우백질 복운모 화강암이 $1875{\pm}75$ Ma에 대륙 충돌 환경에서 형성된 S-type 화강암임을 지시한다. 우백질 복운모 화강암내에 나타나는 구상 화강편마암으로부터 추출된 모나자이트에 대한 SHRIMP 분석에 의해 구상 화강편마암을 형성시킨 변성작용 시기가 $1867{\pm}4$ Ma임이 밝혀졌고 이 변성 연령은 우백질 복운모 화강암의 관입시기와 오차 범위내에서 유사하다. 이는 우백질 복운모 화강암 관입시 마그마내로 침강한 변성퇴적암이 마그마에 의해 $650-740^{\circ}C$, 4-6.5 kbar 정도의 열변성작용을 받아 구상 화강편마암이 만들어졌음을 지시한다. 열변성 작용시 근청석을 주로 하는 구상 화강편마암의 핵부가 만들어졌고 이때 일부 구상 화강편마암에서는 석영 및 장석을 포함한 일부 광물이 용융되어 만들어진 우백질 용융체가 핵부를 빠져나온 후 핵부 주변에서 결정화하여 우백질 각부를 형성하였다. 구상 화강편마암이 형성된 후 마그마 분화작용 중 최후에 남아있던 열수가 구상 화강편마암에 침투하여 후퇴 변성작용을 일으키고 이때 근청석이 pinite화 되면서 세립의 녹니석과 견운모로 치환되었다. 무주 화강편마암은 퇴적기원의 변성암이므로 앞으로는 무주 화강암질 편마암으로 명명하는 것이 적합하다.

Keywords

References

  1. Abdallah, N., Liegeois, J.P., De Waele, B., Fezaa, N. and Ouabado, A., 2007, The Temaguessine Fe-cordierite orbicular granite(Central Hoggar, Algeria): U-Pb SHRIMP age, petrology, origin and geodynamical consequences for the late Pan-African magmatism of the Tuareg shield, African Earth Sciences, 49, 153-178. https://doi.org/10.1016/j.jafrearsci.2007.08.005
  2. Chappell, B.W and White, A.J.R, 1974, Two contrasting granite types. Pacific Geology ,8, 173-174.
  3. Cheong, W.S. and Na, K.C., 2008, Origin and evolution of leucogranite of NE Yeongnam Massif from Samcheok Area, Korea. Journal of the Petrological Society of Korea, 16-35 (in Korean with English abstract).
  4. Ding, L., Kapp, P., Zhong, D. and Deng, W., 2003, Cenozoic Volcanisim in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44, 1833-1865. https://doi.org/10.1093/petrology/egg061
  5. Harris, N.B.W., Perace, J.A. and Tindle, A.G., 1986, Geochemical characteristics of collision-zone magmatism. In: Cow-ard, M.P., Reis, A.S.(Eds.), Collision Tectonics: Geological Society of London, Special Publication, 67-81.
  6. Kim, H.S., Kim, J.S. and Kim, H.M., 1979, Orbicular Gabbroic Rocks from the Hwangryeong Mountain District, Pusan, Korea. Journal of the Geological society of Korea 15, 295-313.
  7. Kim, H.S., Kim, Y.K., Jeong, H.J. and Kim, H.M., 1985, Orbicular hornfelses from the yeongdo district, pusan, korea. Journal of the Geological society of Korea 21, 50-62.
  8. Kim, H.S. and Lim, S.T., 1992, The petrological study on the Muju orbicular geniss. Natural monument(fossil, rock) and dionsaur tracks report, Journal of the Geological society of Korea, 157-185.
  9. Kim, H.S. and Park, C.S., 1992, Petrological and geochemical study on the Sangju orbicular diorite. Natural monument(fossil, rock) and dionsaur tracks report, Journal of the Geological society of Korea, 101-131.
  10. Kim, J.M., Cho, M.S. and Cheong, W.S., 2009, SHRIMP zircon and monazite U-Pb ages of high-temperature/lowpressure metamorphism and granitic magmatism in the northern Yeongnam Massif (in Korean). Annual meetings of Geological Society of Korea, Cheju, Korea. (October), 119p.
  11. Kim, N.H., Song, Y.S., Park, K.H. and Lee, H.S., 2009, SHRIMP U-Pb zircon ages of the granite gneiss from the Pyeonghae Area of the northeastern Yeongnam Massif (Sobaeksan Massif). Journal of the Petrological Society of Korea, 18, 31-47 (in Korean with English abstract)
  12. Kim, N.H., Cheong, C.S., Park, K.H., Kim, J. and Song, Y.S., 2012, Crustal evolution of northeastern Yeongnam Massif, Korea, revealed by SHRIMP U-Pb zircon geochronology and geochemistry. Gondwana Research, 21, 865-875. https://doi.org/10.1016/j.gr.2011.10.003
  13. Kwon, W.Y., Kim, H.S. and Yi, S.K., 1995, Petrogenesis of the orbicular gneiss in the Muju area. Journal of the Petrological Society of Korea, 4, 186-200.
  14. Lee, H.S., Park, K.H., Song, Y.S., Kim, N.H. and Orihashi, Y., 2010, LA-ICP-MS U-Pb zircon age of the Hongjesa Granite in the Northeast Yeongnam Massif. Journal of the Petrological Society of Korea, 19, 103-108 (in Korean with English abstract).
  15. Lee, S.G., Asahara, Y., Tanaka, T., Kim, N.H., Kim, K.H., Yi, K., Masuda, A. and Song, Y.S., 2010, La-Ce and Sm-Nd isotopic systematics of early Proterozoic leucogranite with tetrad REE pattern. Chemical Geology, 276, 360-373. https://doi.org/10.1016/j.chemgeo.2010.07.003
  16. Lee, S.H., Jang, Y.D. and Kim, J.J., 2008, The petrological and mineralogical study on the Sangju orbicular granite. Proceedings of the Annual Joint Conference, Petrological Society of Korea and Mineralogical Society of Korea, Busan, Korea. (May), 93.
  17. Ludwig, K.R., 2008, Isoplot 3.6. A User's Manual. Berkley Geochronology Center Special Publication 4, 2455 Ridge Road, Berkely, Ca 94709, USA, 78p.
  18. LudWig, K.R., 2009, SQUID 2.50. A User' Manual. Berkley Geochronology Center, 2455 Ridge Road, Berkely, CA 94709, USA, 102p.
  19. Marchand, J., Bossiere, G. and Leyreloup, A., 1982, Pinite and Pseudo-"Glass" in High-Grade Metamorphic Gneisses, Contributions to Mineralogy and Petrology, 79, 439-442. https://doi.org/10.1007/BF01132074
  20. Maniar, P.D. and Piccoli, P.M., 1989, Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  21. Oh, C.W., Kim, S.W., Hwang, S.K., Son, C.W., Kim, C.S. and Kim, H.S., 2004, The study on the spherulitic rhyolites in the northern part of juwang Mt., cheongsong. Journal of the Petrological society of Korea, 13, 103-118.
  22. Perace, J.A Harris, N.B. and Tindle, A.G., 1984, Trace element discrimination diagrams for the interpretation of granitic rocks. Journa of Petrology, 25, 957-983.
  23. Perace, J.A., 1996, Source and setting of granitic rocks. Episodes 19, 120-125.
  24. Son, C.M., Lee, D.S., Jeong, J.G. and Kang, J.N., 1980, Petrographic Study on the Orbicular rocks in Korea. The report for conservation of Korean nature, 5-61p.
  25. Song, Y.S. and Lee, S.M., 1989, Petrology of the precambrian metamorphic rocks from the central sobaegsan massif, korea. Journal of the Geological society of Korea, 25, 451-468.
  26. Spear, F.S. and Cheney, J.T., 1989, A petrogenetic grid for pelitic schists in the system $SiO_{2}$ - $Al_{2}O_{3}$ - FeO - MgO - $K_ {2}O$ - $H_{2}O$. Contributions to Mineralogy and Petrology, 101, 149-164. https://doi.org/10.1007/BF00375302
  27. Sun, S.S. and McDough, W.F., 1989, Chemical and isotopic systematic of oceanic basalt: implications for mantle composition and process. In: Saunders, A.D., Norry, M.J.(Eds.), Mgamatism in the Ocean Basin: Geological Soci-ety of London, Special Publication, 42, 528-548.
  28. Winkler, H.G.F., 1979, Petrogenesis of Metamorphic Rocks. Springer-Verlag, 334.

Cited by

  1. The tectonic evolution and important geoheritages in the Jinan and Muju area, Jeollabuk-do vol.52, pp.5, 2016, https://doi.org/10.14770/jgsk.2016.52.5.709
  2. Metamorphic and magmatic evolution of the Paleoproterozoic gneisses in the Sancheong area, Yeongnam Massif, South Korea, and their implications to the tectonics in the Northeast Asia vol.298, 2017, https://doi.org/10.1016/j.precamres.2017.06.001