DOI QR코드

DOI QR Code

Evaluation of the Radiopacity of Contemporary Luting Cements by Digital Radiography

디지털방사선촬영술을 이용한 합착용 시멘트의 방사선불투과성 평가

  • An, Seo-Young (Department of Oral and Maxillofacial Radiology, Kyungpook National University) ;
  • Lee, Du-Hyeong (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Lee, Kyu-Bok (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • 안서영 (경북대학교 치의학전문대학원 구강악안면방사선학교실) ;
  • 이두형 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 이규복 (경북대학교 치의학전문대학원 치과보철학교실)
  • Received : 2013.10.04
  • Accepted : 2013.11.05
  • Published : 2013.12.31

Abstract

This study examined the radiopacity of eight contemporary luting cements by direct digital radiography. Five disc-shaped specimens ($5mm{\times}1mm$) were prepared for each material tested (BisCem, Clearfil SA Luting, Duolink, Maxcem Elite, Multilink Speed, Panavia F 2.0, RelyX Unicem Clicker, V-link). The specimens were radiographed using a Kodak CS 7600 image plate (Carestream Health, Inc., Rochester, NY, USA) and an aluminum step wedge with a range of thicknesses (1.5 to 16.5 mm in 1.5 mm increments) and a 1 mm tooth used as a reference. A dental X-ray machine Kodak 2200 Intraoral X-ray System (Carestream Health, Inc., Rochester, NY, USA), operating at 70 kVp, 4 mA, 0.156 s and a source-to-sample distance of 30 cm, was used. According to international standards, the radiopacity of the specimens was compared with that of an aluminum step wedge using NIH ImageJ software (available at http://rsb.info.nih.gov/ij/).The data was analyzed by ANOVA and a Tukey's post hoc test. Maxcem Elite (5.66) showed the highest radiopacity of all materials, followed in order by Multilink Speed (3.87) and V-link (2.83). The radiopacity of Clearfil SA Luting (1.35), BisCem (1.33), Panavia F 2.0 (1.29) and Duolink (1.10) were between enamel (1.79) and dentin (0.19). RelyX Unicem Clicker (0.71) showed the lowest radiopacity, which was higher than that of dentin. All materials showed a radiopacity above the minimum recommended by the International Organization for Standardization and the American National Standards/American Dental Association with the exception of RelyX Unicem Clicker.

이 연구의 목적은 치과임상에서 사용되는 8종의 합착용 시멘트의 방사선불투과성을 디지털 방사선 촬영술로 평가하는 것이었다. BisCem, Clearfil SA Luting, Duolink, Maxcem Elite, Multilink Speed, Panavia F 2.0, RelyX Unicem Clicker, V-link의 8종의 재료를 5개의 원형 시편 (직경: 4 mm, 두께: 1 mm)으로 제작하였고 사람 치아의 법랑질과 상아질 시편을 1 mm 두께로 준비하여 알루미늄 스텝 웨지와 함께 촬영하였다. 관전압 70kVP, 관전류 4 mA, 노출시간 0.156초, 초첨 필름간 거리는 30 cm으로 영상판을 이용하여 촬영하였으며, ImageJ 소프트웨어를 이용하여 평균 회색조 수치를 측정하고, 이를 흡수계수로 환산한 후 검량선(calibration curve)을 이용하여 각 합착용 시멘트의 등가 알루미늄 두께를 구하였다. 합착용 시멘트의 평균 방사선불투과성은 알루미늄 두께 0.71 ~ 5.66 mm로, RelyX Unicem Clicker (0.71 mm Al)을 제외하고는 등가 알루미늄 두께 보다 높은 방사선불투과성을 보여 ISO 규격을 만족하였으며, 법랑질은 1.79 mm, 상아질은 0.19 mm 두께의 알루미늄에 해당하는 방사선불투과성을 나타내었다.

Keywords

References

  1. Tsuge T: Radiopacity of conventional, resinmodified glass ionomer, and resin-based luting materials. J Oral Sci 2009;51:223-230. https://doi.org/10.2334/josnusd.51.223
  2. ANSI/ADA: Specification No. 57 ES: Endodontic Sealing Material. Chicago I, ANSI/ADA, 2000.
  3. Fraga RC, Luca-Fraga LR, Pimenta LA: Physical properties of resinous cements: an in vitro study. J Oral Rehabil 2000;27:1064-1067. https://doi.org/10.1046/j.1365-2842.2000.00657.x
  4. International Standard Organization. ISO 4049 Dentistry-Polymer-based filling ralm, (ed 4). Geneva, International Organization for Standardization 2009, pp. 1-28.
  5. Attar N, Tam LE, McComb D: Mechanical and physical properties of contemporary dental luting agents. J Prosthet Dent 2003;89:127-134. https://doi.org/10.1067/mpr.2003.20
  6. Soares CJ, Santana FR, Fonseca RB, Martins LR, Neto FH: In vitro analysis of the radiodensity of indirect composites and ceramic inlay systems and its influence on the detection of cement overhangs. Clin Oral Investig 2007;11:331-336. https://doi.org/10.1007/s00784-007-0130-3
  7. Wilson TG, Jr.: The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study. J Periodontol 2009;80:1388-1392. https://doi.org/10.1902/jop.2009.090115
  8. Dukic W, Delija B, Derossi D, Dadic I: Radiopacity of composite dental materials using a digital X-ray system. Dent Mater J 2012;31:47-53. https://doi.org/10.4012/dmj.2011-119
  9. Pitt Ford TR, Andreasen JO, Dorn SO, Kariyawasam SP: Effect of super-EBA as a root end filling on healing after replantation. J Endod 1995;21:13-15. https://doi.org/10.1016/S0099-2399(06)80550-9
  10. Torabinejad M, Pitt Ford TR: Root end filling materials: a review. Endod Dent Traumatol 1996;12:161-178. https://doi.org/10.1111/j.1600-9657.1996.tb00510.x
  11. Tanomaru-Filho M, da Silva GF, Duarte MA, Goncalves M, Tanomaru JM: Radiopacity evaluation of root-end filling materials by digitization of images. J Appl Oral Sci 2008;16:376-379. https://doi.org/10.1590/S1678-77572008000600004
  12. Baksi BG, Sen BH, Eyuboglu TF: Differences in aluminum equivalent values of endodontic sealers: conventional versus digital radiography. J Endod 2008;34:1101-1104. https://doi.org/10.1016/j.joen.2008.06.004
  13. Tasdemir T, Yesilyurt C, Yildirim T, Er K: Evaluation of the radiopacity of new root canal paste/sealers by digital radiography. J Endod 2008;34:1388-1390. https://doi.org/10.1016/j.joen.2008.08.008
  14. Gu S, Rasimick BJ, Deutsch AS, Musikant BL: Radiopacity of dental materials using a digital X-ray system. Dent Mater 2006;22:765-770. https://doi.org/10.1016/j.dental.2005.11.004
  15. Carvalho-Junior JR, Correr-Sobrinho L, Correr AB, Sinhoreti MA, Consani S, Sousa-Neto MD: Radiopacity of root filling materials using digital radiography. Int Endod J 2007;40:514-520. https://doi.org/10.1111/j.1365-2591.2007.01246.x
  16. Wadhwani C, Hess T, Faber T, Pineyro A, Chen CS: A descriptive study of the radiographic density of implant restorative cements. J Prosthet Dent 2010; 103:295-302. https://doi.org/10.1016/S0022-3913(10)60062-5
  17. Altintas SH, Yildirim T, Kayipmaz S, Usumez A: Evaluation of the Radiopacity of Luting Cements by Digital Radiography. J Prosthodont 2012.
  18. Poorsattar Bejeh Mir A, Poorsattar Bejeh Mir M: Assessment of radiopacity of restorative composite resins with various target distances and exposure times and a modified aluminum step wedge. Imaging Sci Dent 2012;42:163-167. https://doi.org/10.5624/isd.2012.42.3.163
  19. Amirouche-Korichi A, Mouzali M, Watts DC: Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Dent Mater 2009;25:1411-1418. https://doi.org/10.1016/j.dental.2009.06.009
  20. Watts DC, McCabe JF: Aluminium radiopacity standards for dentistry: an international survey. J Dent 1999;27:73-78. https://doi.org/10.1016/S0300-5712(98)00025-6
  21. Duarte MA, Demarchi AC, Yamashita JC, Kuga MC, Fraga Sde C: pH and calcium ion release of 2 root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:345-347. https://doi.org/10.1067/moe.2003.12
  22. Camilleri J, Montesin FE, Di Silvio L, Pitt Ford TR: The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use. Int Endod J 2005;38:834-842. https://doi.org/10.1111/j.1365-2591.2005.01028.x
  23. Tveit AB, Espelid I: Radiographic diagnosis of caries and marginal defects in connection with radiopaque composite fillings. Dent Mater 1986;2:159-162. https://doi.org/10.1016/S0109-5641(86)80027-6
  24. Akerboom HB, Kreulen CM, van Amerongen WE, Mol A: Radiopacity of posterior composite resins, composite resin luting cements, and glass ionomer lining cements. J Prosthet Dent 1993;70:351-355. https://doi.org/10.1016/0022-3913(93)90221-9
  25. el-Mowafy OM, Brown JW, McComb D: Radiopacity of direct ceramic inlay restoratives. J Dent 1991;19:366-368. https://doi.org/10.1016/0300-5712(91)90058-7
  26. el-Mowafy OM, Benmergui C: Radiopacity of resinbased inlay luting cements. Oper Dent 1994;19:11-15.
  27. Stecke J, Cruz AD, Almeida SM, Boscolo FN: Alternative X-ray filters for an intra-oral digital radiographic system. Dentomaxillofac Radiol 2012; 41:361-366. https://doi.org/10.1259/dmfr/94751012
  28. Johnson WW, Dhuru VB, Brantley WA: Composite microfiller content and its effect on fracture toughness and diametral tensile strength. Dent Mater 1993;9:95-98. https://doi.org/10.1016/0109-5641(93)90082-2
  29. Fonseca RB, Haiter-Neto F, Fernandes-Neto AJ, Barbosa GA, Soares CJ: Radiodensity of enamel and dentin of human, bovine and swine teeth. Arch Oral Biol 2004;49:919-922. https://doi.org/10.1016/j.archoralbio.2004.05.006

Cited by

  1. Radiopacity for Contemporary Luting Cements Using Digital Radiography under Various Exposure Conditions vol.24, pp.8, 2015, https://doi.org/10.1111/jopr.12288