DOI QR코드

DOI QR Code

A Numerical Investigation of Effects of Methanol Concentration Fluctuation in Active-type Direct Methanol Fuel Cell (DMFC) Systems

액티브형 직접메탄올연료전지 시스템의 메탄올 농도 변동이 성능에 미치는 영향성에 대한 수치적 연구

  • Gwak, Geonhui (School of Mechanical Engineering, Inha, University) ;
  • Ko, Johan (School of Mechanical Engineering, Inha, University) ;
  • Lee, Suwon (School of Energy Resources Engineering, Inha, University) ;
  • Lee, Jinwoo (LIGnex1 Co., Ltd.) ;
  • Peck, Donghyun (Fuel Cell Research Center Korea Institute Energy Research) ;
  • Jung, Doohwan (Fuel Cell Research Center Korea Institute Energy Research) ;
  • Ju, Hyunchul (School of Mechanical Engineering, Inha, University)
  • 곽건희 (인하대학교 기계공학과) ;
  • 고요한 (인하대학교 기계공학과) ;
  • 이수원 (인하대학교 에너지공학과) ;
  • 이진우 ;
  • 백동현 (한국에너지기술연구원 수소연료전지 연구단) ;
  • 정두환 (한국에너지기술연구원 수소연료전지 연구단) ;
  • 주현철 (인하대학교 기계공학과)
  • Received : 2013.10.07
  • Accepted : 2013.12.31
  • Published : 2013.12.31

Abstract

In this study, we develop a one-dimensional (1-D), two-phase, transient-thermal DMFC model to investigate the effect of methanol concentration fluctuation that usually occurs in active-type direct methanol fuel cell (DMFC) systems. 1-D transient simulations are conducted and time-dependent behaviors of DMFCs are analyzed under various DMFC operating conditions such as anode/cathode stoichiometry, cell temperature, and cathode inlet humidification. The simulation results indicate that the effect of methanol concentration fluctuation on DMFC performance can be mitigated by proper control of anode/cathode stoichiometry, providing a guideline to optimize operating conditions of active DMFC systems.

Keywords

References

  1. T. Schultz, S. Zhou, K. Sundmacher, "Current Status Of and Recent Developments in The Direct Methanol Fuel Cell", Chemical Engineering Technology, Vol. 24, No. 12, 2001, p. 1223. https://doi.org/10.1002/1521-4125(200112)24:12<1223::AID-CEAT1223>3.0.CO;2-T
  2. G. B. Jung, A. Su, C. H. Tu, F. B. Weng, "Effect of Operating Parameters on The DMFC Performance", American Society of Mechanical Engineers, Vol. 2, 2005, p. 81.
  3. J. Ko, P. Chippar, H. C. Ju, "A One-dimensional, Two Phase Model for Direct Methanol Fuel Cells - Part I: Model Development and Parametric Study", Energy, Vol. 35, 2010, p. 2149. https://doi.org/10.1016/j.energy.2010.01.034
  4. H. B. Zhao, J. Shen, J. J. Zhang, H. J. Wang, D. P. Wilkinson, C. E. Gu, "Liquid Methanol Concentration Sensors for Direct Methanol Fuel Cells", Journal of Power Sources, Vol. 159, 2006, p. 626. https://doi.org/10.1016/j.jpowsour.2005.09.067
  5. P. Chippar, J. Ko, H. C. Ju, "A Global Transient, One-dimensional, Two Phase Model for Direct Methanol Fuel Cells (DMFC) - Part II: Analysis of The Time-dependent Thermal Behavior of DMFCs", Energy Vol. 35, 2010, p. 2301. https://doi.org/10.1016/j.energy.2010.02.019
  6. W. Liu, C. Y. Wang, "Three-dimensional Simulations of Liquid Feed Direct Methanol Fuel Cells", Journal of The Electrochemical Society, Vol. 154, 2007, p. B352. https://doi.org/10.1149/1.2429041
  7. J. P. Meyer, J. Newman, "Simulation of The Direct Methanol Fuel Cell: II. Modeling and Data Analysis of Transport and Kinetic Phenomena", Journal of The Electrochemical Society, Vol. 149, 2002, p. A718. https://doi.org/10.1149/1.1473189