DOI QR코드

DOI QR Code

강우 침투로 인한 불포화 사면 붕괴의 유효응력 해석

An Effective Stress Analysis of Unsaturated Slope Failures by Rainfall Infiltration

  • 이영휘 (영남대학교 건설시스템공학과) ;
  • 오세붕 (영남대학교 건설시스템공학과) ;
  • 진인철 (영남대학교 건설시스템공학과) ;
  • 김준우 (건일엔지니어링) ;
  • 박영목 (영남대학교 건설시스템공학과)
  • 투고 : 2013.10.08
  • 심사 : 2013.11.28
  • 발행 : 2013.12.31

초록

불포화 사면에서는 강우시 침투가 일어나고 포화가 됨에 따라 불안정해진다. 불포화토의 유효응력의 관점에서는, 모관흡수력이 감소하면 유효응력이 감소하고 동시에 전단강도도 감소하여 사면 안정성이 저해된다. 본 연구에서는 불포화토의 유효응력을 흡수응력으로 기술하는데 초점을 둔다. 그리고 유한요소응력장에서 안전율을 계산하여 실제 사면의 붕괴를 시뮬레이션한다. 하동 및 포항지역의 풍화토 지층에 대하여 실내실험을 수행하여 불포화 물성을 분석하였다. 그리고 불포화 사면의 침투 해석을 수행하고 응력해석과 안정해석을 통하여 실제 붕괴를 재현하였다. 따라서 불포화 유효응력 원리에 근거하여, 실제 사면의 안정성을 성공적으로 평가할 수 있었다. 유효응력 개념이 강우 침투를 고려한 사면 설계의 실무에 적용될 수 있음을 입증하였다.

Unsaturated slopes experience infiltration during rainfall and become unstable when saturated. On the viewpoint of unsaturated effective stress, as matric suction decreases, both effective stress and shear strength decrease, which declines slope stability consequently. This study is focused on describing effective stress based on suction stress. The actual slope failures are simulated to calculate factors of safety in the field of finite element stress. In the residual soils of Hadong and Pohang, unsaturated properties are evaluated by laboratory tests. For unsaturated slopes, analyses of infiltration, stress and stability were performed to simulate actual failures. Based on unsaturated effective stress principle, the stability of actual slopes could be evaluated successfully. It is verified for the effective stress concept to be applicable to the engineering practice on slope design which considers infiltration by rainfall.

키워드

참고문헌

  1. Integrated Groundwater Information Service, www.gims.go.kr (In Korean) 국가지하수정보센터 홈페이지, www.gims.go.kr
  2. Daily rainfall record data, Korea Meteorological Administration, www.kma.go.kr/weather/observation/past_table.jsp?stn=108&yy=2013&obs=21&x=7&y=14 (In Korean) 기상청 홈페이지, 지상관측자료, www.kma.go.kr/weather/observation/past_table.jsp?tn=108&yy=2013&obs=21&x=7&y=14
  3. Korea Infrastructure Safety Corporation (2011), Design guide on engineered slopes. (In Korean) 한국시설안전관리공단 (2011), 건설공사 비탈면 설계기준(안).
  4. Bishop, A. W. (1954), "The use of pore water coefficients in practice", Geotechnique, 4(4), pp.148-152. https://doi.org/10.1680/geot.1954.4.4.148
  5. Bishop, A. W. (1959), "The principle of effective stress", Teknisk Ukeblad I Samarbeide Med Teknikk, Oslo, Norway, 106(39), pp. 859-863.
  6. Casagli, N., Dapporto, S., Ibsen, M., Tofani, V., and Vannocci, P. (2005), Analysis of the landslide.
  7. Crosta, G.B. and Frattini, P. (2003), Distributed modelling of shallow landslides triggered by intense rainfall. Natural Hazards and Earth System Sciences 3, 81-93. https://doi.org/10.5194/nhess-3-81-2003
  8. Dawson, E.M., Roth, W.H., and Drescher, A. (1999), "Slope stability analysis by strength reduction", Geotechnique 49(6), 835-840. https://doi.org/10.1680/geot.1999.49.6.835
  9. Duncan, J.M. and Wright, S.G. (2005), "Soil Strength and Slope Stability", John Wiley & Sons Inc, N.J., p.309.
  10. Fellenius, W. (1936), "Calculation of the stability of earth dams." Transactions of the 2nd Congress on Large Dams, Washington, D.C., 4, pp.445-463.
  11. GEO-SLOPE (2007a), Stress-Deformation Modeling with SIGMA/W 2007, GEO-SLOPE International Ltd, Canada.
  12. GEO-SLOPE (2007b), Seepage Modeling with SEEP/W 2007, GEO-SLOPE International Ltd, Canada.
  13. GEO-SLOPE (2007c), Stability Modeling with SLOPE/W 2007, GEO-SLOPE International Ltd, Canada.
  14. Griffiths, D.V. and Lane, P.A. (1999), "Slope stability analysis by finite elements", Geotechnique 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387
  15. Iverson, R.M. (2000), "Landslide triggering by rain infiltration", Water Resources Research 36(7), 1897-1910. https://doi.org/10.1029/2000WR900090
  16. Janbu, N. (1954), "Applications of composite slip surfaces for stability analysis", Proceedings of the European Conference on the Stability of Earth Slopes, Stockholm, 3, pp.39-43.
  17. Lu, N. and Likos, W. J. (2006), "Suction stress characteristic curve for unsaturated soils", Journal of Geotechnical and Geoenvironmental Engineering, 132(2), pp.131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  18. Lu, N., Godt, J., and Wu, D. T. (2010), "A closed-form equation for effective stress in unsaturated soil", Water Resources Research, Vol.46, doi:10.1029/2009WR008646, 1-14.
  19. Lu, N., Kaya, M., Collins, B.D., and Godt, J.W. (2013), "Hysteresis of hydromechanical properties of a silty soil," Journal of Geotechnical and Geoenvironmental Engineering, 139(3), pp.507-510. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000786
  20. Lu, N., Wayllace, A., and Oh, S. (2013), "Infiltration-induced seasonally reactivated instability of a highway embankment near the Eisenhower Tunnel, Colorado, USA", Engineering Geology, 162, pp.22-32. https://doi.org/10.1016/j.enggeo.2013.05.002
  21. Oh, S., Lu, N., Kim, Y. K., Lee, S. J., and Lee, S. R. (2012), "Relation between the soil water characteristic curve and the suction stress characteristic curve: experimental evidence from tests on residual soils," Journal of Geotechnical and Geoenvironmental Engineering, 138(1), pp.47-57. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000564
  22. Oh, S., Lu, N., Kim, T.-K., and Lee, Y. H. (2012), "Experimental Validation of Suction Stress Characteristic Curve from Nonfailure Triaxial $K_0$ Consolidation Tests", Journal of Geotechnical and Geoenvironmental Engineering, 139(9), pp.1490-1503.
  23. van Genuchten, M. T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Science Society of America Journal, 44, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  24. van Genuchten, M. T., Leij, F. J., and Yates, S. R. (1991), The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, EPA 600/2-91/065.