DOI QR코드

DOI QR Code

Performance Evaluation of Buried Concrete Pipe under Heavy Traffic Load

교통하중하의 지하 매설관의 거동 평가

  • Ban, Hoki (Dept. of Civil and Environmental Engrg., Hanyang Univ.) ;
  • Park, Seong-Wan (Dept. of Civil & Environmental Engineering, Dankook Univ.) ;
  • Kim, Yong-Rak (Dept. of Civil Engrg., Univ. of Nebraska at Lincoln)
  • 반호기 (한양대학교 건설환경공학과) ;
  • 박성완 (단국대학교 토목환경공학과) ;
  • 김용락 (미국 네브라스카 주립대학교 토목공학과)
  • Received : 2013.09.05
  • Accepted : 2013.12.12
  • Published : 2013.12.31

Abstract

Pipeline is very important infrastructure which is directly related to our daily life. Nevertheless, it is not considered significantly unless it breaks. As most pipelines are buried at a certain depth from the surface of road pavement in urban areas, they are subjected to traffic load. This paper presents the performance of buried concrete pipe under heavy traffic load. Hence, one of the major factors affecting their performance is burial depth. To consider this factor, the ratio of burial depth (H) to diameter of pipe (D) was defined as a key variable. The integrity of buried concrete pipe was investigated with two cases of ratio of burial depth to pipe diameter (H/D=2 and H/D=4). The results provide the limit burial depth to ensure the soundness of buried concrete pipe subjected to heavy traffic load, and more economical design is anticipated with the results.

지하 매설관은 우리의 일상생활과 매우 밀접하지만 일반적으로 붕괴로 인한 피해가 발생하기 전에는 그 중요성에 둔감한 편이다. 대부분의 매설관은 도로포장체 아래에 매설되어 있어 외부하중으로는 주로 교통하중을 받는다. 본 연구에서는 이러한 교통하중을 받는 지하 매설관의 거동에 대해 살펴보았다. 지하 매설관의 거동에 영향을 미치는 인자는 여러 가지가 있지만, 본 연구에서는 매설 깊이(H)와 매설관의 직경(D)의 비를 가장 중요한 인자로 보고 연구를 수행하였다. 두 가지 경우의 매설 깊이에 대한 매설관 직경 비에 따른 매설관의 건전성을 살펴보았다. 결과를 바탕으로 매설관의 건전성을 확보할 수 있는 매설깊이를 결정할 수 있었으며, 보다 경계적인 매설관 설계를 할 수 있을 것으로 기대된다.

Keywords

References

  1. Lee, D-S, Sang, H-K, and Kim, K-Y (2002), "Behavior of underground flexible pipes subject to vehicle load", Journal of the Korean Geotechnical Society, Vol.18, No.4, pp.65-73. (in Korean)
  2. ABAQUS User's Manual Version 6.8 (2008), Hibbt, Karlsson & Sorenson, Inc., Pawtucket, R. I.
  3. Duncan, J. M. and Chang, C. Y. (1970), "Nonlinear analysis of stress and strain in soils", Journal of Soil Mechanics and Foundation Division, ASCE, Vol.96, SM 5, pp.1629-1653.
  4. Im, S., Ban, H., Kim, Y., and Park, S. (2012), "Comparison between a 3-D finite element pavement model and the Mechanistic-Empirical Pavement Design Guide for asphalt pavements", Advances in Transportation Geotechnics II, 2nd InternationalConferenceonTransportation Geotechnics, pp.704-709.
  5. Lee, J. and Fenves, G. L. (1998), "Plastic-damage model for cyclic loading of concrete structures", Journal of Engineering Mechanics, Vol.124, No.8, pp.892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  6. Liedberg, S. (1991), Earth pressure distribution against rigid pipes under various bedding condition, Ph. D. Thesis, Chalmers University of Technology, Goteborg, Sweden.
  7. Lubliner, J., Oliver, J., Oller, S., and Onat, E. (1989), "A plasticdamage model for concrete", International Journal of Solids Structures, Vol.25, No.3, pp.299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  8. Marston, A. and Anderson, A. O. (1913), The theory of loads on pipes in ditches and tests of cement and clay drain tile and sewer pipe, Bulletin 31, Iowa State College.
  9. McGrath, T. J. (1998), Pipe-soil interactions during backfill placements, Ph. D. Thesis, University of Massachusetts, Amherst, MA.
  10. Mohardb, M., Kulak, G. L., Elwi, A., and Murry, D. W. (2001), "Testing and analysis of steel pipe segments", Journal of Transportation Engineering, ASCE, Vol.127, No.5, pp.408-417. https://doi.org/10.1061/(ASCE)0733-947X(2001)127:5(408)
  11. Pettibone, C. H. and Amster, K. H. (1967), "Distribution of soil pressure on concrete pipe", Journal of Pipeline Division, ASCE, Vol.93, No.2, pp.85-102.
  12. Potts, D. M. and Zdravkovic, L. (1999), Finite element analysis for geotechnical engineering: theory and applications, Thomas Telford limited.
  13. Sargand, S. M. and Hazen, G. A. (1998), Field verification of standard installation (SIDD) method for concrete pipe, Ohio University, Ohio Research Institute for Transportation and the Environment, Civil Engineering Department.
  14. Shmulevich, I., Galili, N., and Foux, A. (1985), "Soil stress distribution around buried pipe", Journal of Transportation Engineering, ASCE, Vol.112, No.5, pp.481-493.
  15. Spangler, M. G. (1941), The design of flexible pipe culvert, Bulletin 153, Iowa State College.
  16. Todeschini, C. E. Bianchini, A. C., and Kesler, C. E. (1964), "Behavior of concrete columns reinforced with high strength steels", ACI Journal, Proceeding, Vol.61, No.5, pp.710-716.
  17. Zarghamee, M. S. and Fok, K. L. (1990), "Analysis of prestressed concrete pipe under combined loads", Journal of Structural Engineering, ASCE, Vol.116, No.7, pp.2022-2039. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(2022)

Cited by

  1. Economical design of buried concrete pipes subjected to UK standard traffic loading vol.172, pp.2, 2019, https://doi.org/10.1680/jstbu.17.00035
  2. Reliability analysis of buried polyethylene pipeline subject to traffic loads vol.11, pp.10, 2013, https://doi.org/10.1177/1687814019883785