DOI QR코드

DOI QR Code

선행강우와 현장 모관흡수력을 고려한 산사태 해석 방법 제안

Proposal of Design Method for Landslides Considering Antecedent Rainfall and In-situ Matric Suction

  • 김정환 (연세대학교 토목환경공학과) ;
  • 정상섬 (연세대학교 토목환경공학과) ;
  • 김용민 (연세대학교 토목환경공학과) ;
  • 이광우 (연세대학교 토목환경공학과)
  • 투고 : 2013.05.15
  • 심사 : 2013.12.12
  • 발행 : 2013.12.31

초록

본 연구에서는 전형적인 산사태 발생 메커니즘인 강우침투현상과 현장 모관흡수력을 고려한 산사태 해석 방법을 제시하였으며, 실제 산사태가 발생된 지역을 선정하여 그 적용성을 검토하였다. 이를 위해 대상지역의 시료를 채취하여 함수특성곡선(SWCC) 실험을 수행하였으며, 불포화 투수계수를 산정하였다. 또한 초기 모관흡수력과 강우발생에 따른 모관흡수력 변화를 관측하기 위해 현장계측을 수행하였으며, 그 결과를 산사태 해석에 적용하였다. 그리고 국내 강우특성을 고려한 비탈면 설계를 위하여, 강우패턴에 따른 습윤대 깊이와 안전율 변화를 분석하였다. 특히, 선행강우 효과를 고려한 매개변수 해석을 수행하여 비탈면 안정성에 어떠한 영향을 주는지 습윤대 깊이 변화를 통해 분석하였다. 그 결과, 본 연구에서 제안한 산사태 해석 방법은 지반의 불포화 특성과 선행강우 효과를 고려할 수 있으며, 산사태 발생 위치를 적절히 예측하는 것으로 나타났다. 그리고 강우발생 시, 강우량이 후반부에 집중된 강우패턴에서 비탈면의 안전율이 가장 낮게 나타났다. 또한, 선행강우는 비탈면의 모관흡수력을 감소시켜 불안정성을 증가시키고, 이후 발생된 강우로 인해 습윤대가 깊어지면서 비탈면 파괴 위험이 증가한다.

This study presents a design method for typical rainfall-induced landslide considering in-situ matric suction. Actual landslide data are used to validate the proposed method. The soil-water characteristic curve (SWCC) and unsaturated permeability are experimentally determined to estimate hydraulic properties of testing site. The field measurement of matric suction is carried out to monitor in-situ matric suction in a natural slope subjected to rainfall infiltration, which is incorporated in the landslide analysis. The wetting band depth and safety factor of the slope are assessed to clarify the effect of domestic rainfall pattern. Especially, the effect of antecedent rainfall on the slope stability is investigated and discussed in terms of wetting band depth using parametric study. It is found from the result of this study that proposed design method can consider the characteristic of unsaturated soil and effect of antecedent rainfall. The location of the scarp zone is fairly well predicted by proposed design method. Moreover, heavy rainfall, concentrated in the backward part with time, causes the lowest safety factor of the slope. These results demonstrate that decrease in matric suction due to antecedent rainfall may trigger slope instability. After the antecedent rainfall, additional rainfall may cause the slope failure due to increasing wetting band depth.

키워드

참고문헌

  1. Ministry of Land Infrastructure and Transport (2009), River design criteria.
  2. Ministry of Land Infrastructure and Transport (2012), Korea Precipitation Frequency Data Server, www.k-idf.re.kr.
  3. National Disaster Management Institute (2008), A study on the steep slope information compilation and development of an analysis system, 1st report: the application of an early warning system using rainfall data in Korea.
  4. Korea Forest Service (2010), Countermeasure for forest disaster in the summer season, Korea Forest Service Report, pp.21.
  5. ASTM D5298-10, "Standard test method for measurement of soil potential using filter paper".
  6. Brooks, R. H. and Corey, A. T. (1964), "Hydraulic properties of porous media", Colorado State Univ. Hydrol. Paper, No.3, pp.27.
  7. Chatterjea, K. (1989), "Observation on the fluvial and slope processes in Singapore and their impact on the urban environment" PhD Thesis. National Univ. of Singapore, Singapore.
  8. Cho, S.E. and Lee, S.R. (2000), "Slope stability analysis of unsaturated soil slopes due to rainfall infiltration" Journal of Korean Geotechnical Society. Vol.16, No.1, pp.51-64.
  9. Cho, S.E. and Lee, S.R. (2001), "Instability of unsaturated soil slopes due to infiltration", Computers and Geotehcnics, Vol.28, No.3, pp.185-208. https://doi.org/10.1016/S0266-352X(00)00027-6
  10. Fourie, A.B., Rowe, D., and Blight, G.E. (1999), "The effect of infiltration on the stability of the slopes of a dry ash dump" Geotechnique, Vol.49, No.1, pp.1-13. https://doi.org/10.1680/geot.1999.49.1.1
  11. Fredlund, D.G., Xing, A., and Huang, S. (1994), "Predicting the permeability function for unsaturated soils using the soil-water characteristic curve", Canadian Geotechnical Journal, Vol.31, pp.533-546. https://doi.org/10.1139/t94-062
  12. Fredlund, D.G. and Xing, A. (1994), "Equations for the soil-water characteristic curve", Canadian Geotechnical Journal, Vol.31, No.3, pp.521-532. https://doi.org/10.1139/t94-061
  13. Geo-slope International (2012), Seep/w for finite element seepage analysis, user's guide, Calgary, Alta., Canada.
  14. Hwang, H.G., Cho, K.M., Lee, S.W., Kim, K.H., and Yune, C.Y. (2013), "Site Investigation on 2012 Slope Hazard in Korea and its Triggering Factors", 2013 KGS Spring National Conference, pp.117-120.
  15. Lee, K.W., Kim, Y.M., Kim, J.H., and Jeong, S.S. (2012), "Distribution of matric suction for unsaturated soils based on filed measurement and soil-water characteristic curve test", 2012 KGS Fall National Conference, pp.587-529.
  16. Lee, S.R., Oh, T.K., Kim, Y.K., and Kim, H.C. (2009), "Influence of Rainfall Intensity and Saturated Permeability on Slope Stability during Rainfall Infiltration", Journal of the Korean Geotechnical Society, Vol.25, No.1, pp.65-76.
  17. LEE, S.J. (2004), Estimation of Unsaturated Shear Strength and Soil Water Characteristic Curve for Weathered Granite Soil, PhD Thesis. Korea Advanced Institute of Science and Technology.
  18. Iverson, R.M. and Denlinger, R.P. (2001), "Flow of variably fluidized granular masses across three dimensional terrain: 1. Coulomb mixture theory", Journal of Geophysical Research, Vol.106(B1), pp.537-552.1 https://doi.org/10.1029/2000JB900329
  19. Jeong, S.S., Kim, J.H., and Lee, K.H. (2008), "Effect of clay content on well-graded snads due to infiltration", Engineering Geology, Vol.102, pp.74-81. https://doi.org/10.1016/j.enggeo.2008.08.002
  20. Jeong, S.S., Cho, J.Y., and Lee, J.H. (2009), "Stability Analysis of Unsaturated Weathered Soil Slopes Considering Rainfall Duration", Journal of the Korean Society of Civil Engineers, Vol.29, No.1, pp.1-9.
  21. Kim, J. H. (2010), Plasticity modeling and coupled finite element analysis for partially-saturated soils. Ph.D. Thesis, University of Colorado, Boulder, US.
  22. Kim, J.H., Jeong, S.S., and Regueiro, R.A. (2012), "Instability of partially saturated soil slopes due to alteration of rainfall pattern", Engineering Geology, Vol.147-148, pp.28-36. https://doi.org/10.1016/j.enggeo.2012.07.005
  23. Kim, J.H., Jeong, S.S., Park, S.W., and Sharma, J. (2004), "Influence of rainfall-induced wetting on the stability ok slopes in weathered soils", Engineering Geology, pp.251-262.
  24. Soilworks (2013), Theoretical user's manual. MIDAS IT.
  25. Marchi, L., Arattano, M., and Deganutti, A.M. (2002), "Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps)," Geomorphology, Vol.46, pp.1-17. https://doi.org/10.1016/S0169-555X(01)00162-3
  26. Ng, C.W.W. and Shi, Q. (1998), "A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage", Computers and Geotechnics Vol.22, No.1, pp.1-28. https://doi.org/10.1016/S0266-352X(97)00036-0
  27. Pham, H.Q. and Fredlund, D.G. (2004), "New apparatus for the measurement of the soil-water characteristic curves", Proceedings of the 57th Canadian Geotechnical Conference, Quebec, Quebec City, Canada
  28. Rahardjo, H., Li, X.E., Toll, D.G., and Leong, E.C. (2001), "The effect of antecedent rainfall on slope stability", Geotechnical and Geological Engineering. Vol.19, pp.371-399. https://doi.org/10.1023/A:1013129725263
  29. Tan, S.B., Tan, S.L., Lim, T.L., and Yang, K.S. (1987), "Landslide problems and their control in Singapore." Proceedings of the 9th Southeast Asian Geotechnical Conference. vol.1 Bangkok, Thailand, pp.25-36.
  30. Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E., and Clifton, A. W. (1996), "Model for the prediction of shear strength with respect to soil suction", Can. Geotech. J., Vol.33, pp.379-392. https://doi.org/10.1139/t96-060
  31. van Genuchten, M. T. (1980), "A closed form equation for prediction the hydraulic conductivity of unsaturated soils", Soil Science Society America Journal, Vol.44, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  32. Wei, J., Heng, Y.S., Chow, W.C., and Chong, M.K. (1991), "Landslide at Bukit Batok sports complex", Proceedings of the 9th Asian Conference on Soil Mechanics and Foundation Engineering. vol. 1. Balkema: Rotterdam; Bankok, Thailand. pp.445-448.
  33. Yune, C.Y., Kim, K.S., Lee, S.W., Jun, K.J., and Kim, G.H. (2010), "Analysis of Slope Hazard-Triggering Rainfall Characteristics in Gangwon Province by Database Construction", Journal of the Korean Geotechnical Society, Vol.26, No.10, pp.27-39.

피인용 문헌

  1. Analysis of Extreme Rainfall Distribution Scenarios over the Landslide High Risk Zones in Urban Areas vol.58, pp.3, 2016, https://doi.org/10.5389/KSAE.2016.58.3.057
  2. Rainfall intensity-duration thresholds for landslide prediction in South Korea by considering the effects of antecedent rainfall pp.1612-5118, 2017, https://doi.org/10.1007/s10346-017-0892-x
  3. 강우침투에 의한 비탈면 안정해의 수리-역학적 모델을 이용한 커플링 효과 vol.31, pp.9, 2015, https://doi.org/10.7843/kgs.2015.31.9.5
  4. 불포화토 사면 안정해석에서 선행강우의 영향에 관한 연구 vol.35, pp.5, 2015, https://doi.org/10.12652/ksce.2015.35.5.1073
  5. 선행강우를 고려한 산사태 유발 강우기준(ID curve) 분석 vol.32, pp.4, 2013, https://doi.org/10.7843/kgs.2016.32.4.15
  6. 광역적 산사태 모니터링을 위한 무선센서네트워크 기술의 적용 vol.34, pp.9, 2013, https://doi.org/10.7843/kgs.2018.34.9.19
  7. Characteristics of Strength and Water Content of Mountain Ground Based on Rainfall Conditions vol.19, pp.4, 2019, https://doi.org/10.9798/kosham.2019.19.4.115
  8. 수치해석에 의한 강우 침투 시 사면 파괴시간의 확률론적 해석 vol.35, pp.12, 2013, https://doi.org/10.7843/kgs.2019.35.12.45
  9. EICP 방법으로 처리된 사질토의 전단 강성도 및 강도 증가 분석 vol.36, pp.1, 2013, https://doi.org/10.7843/kgs.2020.36.1.17