DOI QR코드

DOI QR Code

Wide-Beam Circularly Polarized Crossed Scythe-Shaped Dipoles for Global Navigation Satellite Systems

  • Ta, Son Xuat (Department of Electrical and Computer Engineering, Ajou University) ;
  • Han, Jea Jin (Department of Electrical and Computer Engineering, Ajou University) ;
  • Park, Ikmo (Department of Electrical and Computer Engineering, Ajou University) ;
  • Ziolkowski, Richard W. (Department of Electrical and Computer Engineering, University of Arizona)
  • Received : 2013.10.04
  • Accepted : 2013.11.20
  • Published : 2013.12.31

Abstract

This paper describes composite cavity-backed crossed scythe-shaped dipoles with wide-beam circularly polarized (CP) radiation for use in Global Navigation Satellite Systems. Each branch of the dipole arm contains a meander line, with the end shaped like a scythe to achieve a significant reduction in the size of the radiator. For dual-band operation, each dipole arm is divided into two branches of different lengths. The dipoles are crossed through a $90^{\circ}$ phase delay line of a vacant-quarter printed ring to achieve CP radiation. The crossed dipoles are incorporated with a cavity-backed reflector to make the CP radiation unidirectional and to improve the CP radiation beamwidth. The proposed antennas have broad impedance matching and 3-dB axial ratio bandwidths, as well as right-hand CP radiation with a wide-beamwidth and high front-to-back ratio.

Keywords

References

  1. J. J. H. Wang, "Antennas for global navigation satellite system (GNSS)," Proceedings of the IEEE, vol. 100, no. 7, pp. 2349-2355, Jul. 2012. https://doi.org/10.1109/JPROC.2011.2179630
  2. J. W. Baik, T. H. Lee, S. Pyo, S. M. Han, J. Jeong, and Y. S. Kim, "Broadband circularly polarized crossed dipole with parasitic loop resonators and its array," IEEE Transactions on Antennas Propagation, vol. 59, no. 1, pp. 80-88, Jan. 2011. https://doi.org/10.1109/TAP.2010.2090463
  3. K. M. Mak and K. M. Luk, "A circularly polarized antenna with wide axial ratio beamwidth," IEEE Transactions on Antennas Propagation, vol. 57, no. 10, pp. 3309-3312, Oct. 2009. https://doi.org/10.1109/TAP.2009.2029370
  4. S. W. Qu, C. H. Chan, and Q. Xue, "Wideband and high-gain composite cavity-backed crossed triangular bowtie dipoles for circular polarized radiation," IEEE Transactions on Antennas Propagation, vol. 58, no. 10, pp. 3157-3164, Oct. 2010. https://doi.org/10.1109/TAP.2010.2055792
  5. L. Wang, H. C. Yang, and Y. Li, "Design of a new printed dipole antenna using in high latitudes for Inmarsat," IEEE Antennas Wireless Propagation Letters, vol. 10, pp. 358-360, 2011. https://doi.org/10.1109/LAWP.2011.2146224
  6. J. Zhang, H. C. Yang, and D. Yang, "Design of a high-gain circularly polarized antenna for Inmarsat communications," IEEE Antennas Wireless Propagation Letters, vol. 11, pp. 350-353, 2012. https://doi.org/10.1109/LAWP.2012.2191382
  7. K. Y. Lam, K. M. Luk, K. F. Lee, H. Wong, and K. B. Ng, "Small circularly polarized U-slot wideband patch antenna," IEEE Antennas Wireless Propagation Letters, vol. 10, pp. 87-90, 2011. https://doi.org/10.1109/LAWP.2011.2110631
  8. L. Boccia, G. Amendola, and G. Di Massa, "A dual frequency microstrip patch antenna for high-precision GPS applications," IEEE Antennas Wireless Propagation Letters, vol. 3, no. 1, pp. 157-160, 2004. https://doi.org/10.1109/LAWP.2004.832127
  9. S. Chen, G. Liu, X. Chen, T. Lin, X. Liu, and Z. Duan, "Compact dual-band GPS microstrip antenna using multilayer LTCC substrate," IEEE Antennas Wi-reless Propagation Letters, vol. 9, pp. 421-423, 2010. https://doi.org/10.1109/LAWP.2010.2049822
  10. X. L. Bao and M. J. Ammann, "Dual-frequency circularly- polarized patch antenna with compact size and small frequency ratio," IEEE Transactions on Antennas Propagation, vol. 55, no. 7, pp. 2104-2107, Jul. 2007. https://doi.org/10.1109/TAP.2007.900271
  11. X. L. Bao and M. J. Ammann, "Dual-frequency dualsense circularly-polarized slot antenna fed by microstrip line," IEEE Transactions on Antennas Propagation, vol. 56, no. 3, pp. 645-649, Mar. 2008. https://doi.org/10.1109/TAP.2008.916961
  12. Nasimuddin, Z. N. Chen, and X. Qing, "Dual-band circularly polarized S-shaped slotted patch antenna with a small frequency ratio," IEEE Transactions on Antennas Propagation, vol. 58, no. 6, pp. 2112-2115, Jun. 2010. https://doi.org/10.1109/TAP.2010.2046851
  13. W. T. Hsieh, T. H. Chang, and J. F. Kiang, "Dualband circularly polarized cavity-backed annular slot antenna for GPS receiver," IEEE Transactions on Antennas Propagation, vol. 60, no. 4, pp. 2076-2080, Apr. 2012. https://doi.org/10.1109/TAP.2012.2186229
  14. P. Jin, C. C. Lin, and R. W. Ziolkowski, "Multifunctional, electrically small, planar near-field resonant parasitic antennas," IEEE Antennas Wireless Propagation Letters, vol. 11, pp. 200-204, 2012. https://doi.org/10.1109/LAWP.2012.2187322
  15. P. Jin and R. W. Ziolkowski, "Multi-frequency, linear and circular polarized, metamaterial-inspired, nearfield resonant parasitic antennas," IEEE Transactions on Antennas Propagation, vol. 59, no. 5, pp. 1446-1459, May 2011. https://doi.org/10.1109/TAP.2011.2123053
  16. Z. Wang, S. Fang, S. Fu, and S. Lu, "Dual-band probe-fed stacked patch antenna for GNSS applications," IEEE Antennas Wireless Propagation Letters, vol. 8, pp. 100-103, 2009. https://doi.org/10.1109/LAWP.2008.2012355
  17. X. Sun, Z. Zhang, and Z. Feng, "Dual-band circularly polarized stacked annular-ring patch antenna for GPS application," IEEE Antennas Wireless Propagation Letters, vol. 10, pp. 49-52, 2011. https://doi.org/10.1109/LAWP.2011.2109365
  18. C. W. Su, S. K. Huang, and C. H Lee, "CP microstrip antenna with wide beamwidth for GPS band application," Electronics Letters, vol. 43, no. 20, pp. 1062-1063, Sep. 2007. https://doi.org/10.1049/el:20071691
  19. Z. N. Chen, W. K. Toh, and X. Qing, "A microstrip patch antenna with broadened beamwidth," Microwave and Optical Technology Letters, vol. 50, no. 7, pp. 1885-1888, Jul. 2008. https://doi.org/10.1002/mop.23539
  20. J. Ouyang, F. Yang, S. Yang, and Z. Nie, "A novel E-shape radiation pattern reconfigurable microstrip antenna for broadband, wide-beam, high-gain applications," Microwave and Optical Technology Letters, vol. 50, no. 8, pp. 2052-2054, Aug. 2008. https://doi.org/10.1002/mop.23554
  21. Z. S. Duan, S. B. Qu, Y. Wu, and J. Q. Zhang, "Wide bandwidth and broad beamwidth microstrip patch antenna," Electronics Letters, vol. 45, no. 5, pp. 249-250, Feb. 2009. https://doi.org/10.1049/el:20092326
  22. C. Wu, L. Han, F. Yang, L. Wang, and P. Yang, "Broad beamwidth circular polarisation antenna: microstrip- monopole antenna," Electronics Letters, vol. 48, no. 19, pp. 1176-1178, Sep. 2012. https://doi.org/10.1049/el.2012.1559
  23. X. L. Bao and M. J. Ammann, "Dual-frequency dual circularly-polarised patch antenna with wide beamwidth," Electronics Letters, vol. 44, no. 21, pp. 1233-1234, Oct. 2008. https://doi.org/10.1049/el:20082284
  24. S. X. Ta, H. Choo, and I. Park, "Planar, lightweight, circularly polarized crossed dipole antenna for handheld UHF RFID reader," Microwave and Optical Technology Letters, vol. 55, no. 8, pp. 1874-1878, Aug. 2013. https://doi.org/10.1002/mop.27674
  25. S. X. Ta, J. Han, R. W. Ziolkowski, and I. Park, "Wide-beam circularly polarized composite cavitybacked crossed scythe-shaped dipole," in Proceedings of the 2013 Asia-Pacific Microwave Conference, Seoul, Korea, 2013.
  26. S. X. Ta, J. J. Han, and I. Park, "Compact circularly polarized composite cavity-backed crossed dipole for GPS applications," Journal of Electromagnetic Engineering and Science, vol. 13, no. 1, pp. 44-50, Mar. 2013. https://doi.org/10.5515/JKIEES.2013.13.1.44
  27. S. X. Ta, I. Park, and R. W. Ziolkowski, "Dual-band wide-beam crossed asymmetric dipole antenna for GPS application," Electronics Letters, vol. 48, no. 25, pp. 1580-1581, Dec. 2012. https://doi.org/10.1049/el.2012.2890
  28. S. X. Ta, H. Choo, I. Park, and R. W. Ziolkowski, "Multi-band, wide-beam, circularly polarized, crossed, asymmetrically barbed dipole antennas for GPS applications," IEEE Transactions on Antennas and Propagation, vol. 61, no. 11, pp. 5771-5775, Nov. 2013. https://doi.org/10.1109/TAP.2013.2277915

Cited by

  1. Single-Feed Composite Cavity-Backed Four-Arm Curl Antenna vol.14, pp.4, 2014, https://doi.org/10.5515/JKIEES.2014.14.4.360
  2. A multiarm curl antenna for GPS applications 2015, https://doi.org/10.1080/09205071.2014.981298
  3. Multiband Circularly Polarized Cavity-Backed Crossed Dipole Antenna vol.63, pp.10, 2015, https://doi.org/10.1109/TAP.2015.2459131
  4. A printed wide-beamwidth circularly polarized antenna via two pairs of radiating slots placed in a square contour vol.9, pp.03, 2017, https://doi.org/10.1017/S1759078716000246
  5. Crossed Dipole Antennas: A review. vol.57, pp.5, 2015, https://doi.org/10.1109/MAP.2015.2470680
  6. Composite GPS Patch Antenna for the AR Bandwidth Enhancement vol.2016, 2016, https://doi.org/10.1155/2016/3250920
  7. Equivalent Model Analysis of Modified Satellite Antenna for Isoflux Pattern Generation vol.14, pp.3, 2014, https://doi.org/10.5515/JKIEES.2014.14.3.278
  8. A Wide-Beam Circularly Polarized Asymmetric-Microstrip Antenna vol.63, pp.8, 2015, https://doi.org/10.1109/TAP.2015.2438397
  9. Dual-Band Circularly Polarized Cavity-Backed Crossed-Dipole Antennas vol.14, 2015, https://doi.org/10.1109/LAWP.2014.2355141
  10. A Miniaturized Wide-Beamwidth Circularly Polarized Planar Antenna via Two Pairs of Folded Dipoles in a Square Contour vol.63, pp.8, 2015, https://doi.org/10.1109/TAP.2015.2438334
  11. Single-Feed, Wideband, Circularly Polarized, Crossed Bowtie Dipole Antenna for Global Navigation Satellite Systems vol.14, pp.3, 2014, https://doi.org/10.5515/JKIEES.2014.14.3.299
  12. Circularly Polarized S-Band Satellite Antenna With Parasitic Elements and Its Arrays vol.13, 2014, https://doi.org/10.1109/LAWP.2014.2347998