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SOME MULTI-STEP ITERATIVE SCHEMES FOR SOLVING
NONLINEAR EQUATIONS

Arif Rafiq a, Ayesha Inam Pasha b and Byung-Soo Lee c, ∗

Abstract. In this paper, we suggest and analyze a family of multi-step iterative
methods which do not involve the high-order differentials of the function for solving
nonlinear equations using a different type of decomposition (mainly due to Noor and
Noor [15]). We also discuss the convergence of the new proposed methods. Several
numerical examples are given to illustrate the efficiency and the performance of
the new iterative method. Our results can be considered as an improvement and
refinement of the previous results.

1. Introduction

In recent years, much attention has been given to develop several iterative meth-
ods for solving nonlinear equations (see for example [1, 6-16]). These methods can
be classified as one-step and two-step methods.

Abbasbandy [1] and Chun [6] have proposed and studied several one-step and two-
step iterative methods with higher order convergence by using the decomposition
technique of Adomian [2-5].

In their methods, they have used the higher order differential derivatives which is
a serious drawback. To overcome this drawback, Noor and Noor [14-15] developed
two-step and three step iterative methods by combining the well-known Newton
method with other one-step and two-step methods.

Following the lines of [14-15], we suggest and analyze a family of multi-step
iterative methods which do not involve the high-order differentials of the function
for solving nonlinear equations using a different type of decomposition (mainly due to
Noor and Noor [15]). We also discuss the convergence of the new proposed methods.
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Several numerical examples are given to illustrate the efficiency and the performance
of the new iterative method. Our results can be considered as an improvement and
refinement of the previous results.

2. Iterative Methods

Consider the nonlinear equation

f(x) = 0.(1)

We assume that α is a simple root of (1) and β is an initial guess sufficiently close
to α. We can rewrite (1) as a coupled system using the Taylor series

f(β) + (x− β)f ′(β) + g(x) = 0,(2)

g(x) = f(x)− f(β)− (x− β)f ′(β).(3)

We can rewrite (3) in the following form

x = β − f(β)
f ′(β)

− g(x)
f ′(β)

(4)

= c + N(x),(5)

where

c = β − f(β)
f ′(β)

(6)

and

N(x) = − g(x)
f ′(β)

.(7)

In order to prove the multi-step iterative methods, He [9] and Lao [11] have consid-
ered the case with the definition that

g(x0) = 0,(8)

and Noor and Noor [15] have considered the case

f(x0) = g(x0).(9)

For the derivation of multi-step iterative methods for solving nonlinear equations,
the condition (9) introduced by Noor and Noor [15] which is actually

f(
∞∑

i=0

xi) = g(
∞∑

i=0

xi)(10)
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is the stronger one. We rectify this error and also remove such kind of conditions.
For this purpose, we substitute (3) into (7) to obtain

N(x) = x− β − f(x)
f ′(β)

+
f(β)
f ′(β)

.(11)

We now construct a sequence of higher order iterative methods by using the fol-
lowing decomposition method which is mainly due to Noor and Noor [15]. This
decomposition of the nonlinear operator N(x) is quite different than that of Ado-
mian decomposition. The main idea of this technique is to look for a solution of (4)
having the series form

x =
∞∑

i=0

xi.(12)

The nonlinear operator N can be decomposed as

N(x) = N(
∞∑

i=0

xi) = N(x0) +
∞∑

i=1

[
N

( i∑

j=0

xj

)]
.(13)

Combining (4), (12) and (13), we have

x = c + N(x0) +
∞∑

i=1

[
N

( i∑

j=0

xj

)]
.(14)

Thus we have the following iterative scheme

x0 =c,

x1 =N(x0),

x2 =N(x0 + x1),

x3 =N(x0 + x1 + x2),(15)
...

xn+1 =N(x0 + x1 + · · ·+ xn) ; n = 1, 2, · · · .

Then

x1 + x2 + · · ·+ xn+1 = N(x0) + N(x0 + x1) + N(x0 + x1 + x2)

+ · · ·+ N(x0 + x1 + x + · · ·+ xn) ;n = 1, 2, · · ·(16)
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and

x = c +
∞∑

i=1

xi.(17)

It follows from (6), (11) and (15), that

x0 = c = β − f(β)
f ′(β)

(18)

and

x1 = N(x0) = −f(x0)
f ′(β)

.(19)

From (14), (16) and (17) we have

x ≈ c = x0 = β − f(β)
f ′(β)

.

This allows us to suggest the following one-step iterative method for solving (1).

Algorithm 1 For a given x0, compute the approximate solution xn+1 by the iter-
ative scheme

xn+1 = xn − f(xn)
f ′(xn)

, f ′(xn) 6= 0, n = 0, 1, 2, · · ·

which is known as “Newton’s Method” and it has the second order convergence.
Again using (15), (17)-(19), we conclude that

x ≈ c + x1 = x0 + N(x0)

= β − f(β)
f ′(β)

− f(x0)
f ′(β)

.

Using this relation, we can suggest the following two-step iterative methods for
solving (1).

Algorithm 2 For a given x0, compute the approximate solution xn+1 by the iter-
ative scheme
Predictor-Step

yn = xn − f(xn)
f ′(xn)

, f ′(xn) 6= 0,

Corrector-Step

xn+1 = yn − f(yn)
f ′(xn)

.

This Algorithm is commonly known as “Double-Newton Method” with the third order
convergence.
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Again using (11) and (15), we can calculate

x2 = N(x0 + x1)

= −f(x0)
f ′(β)

− f(x0 + x1)
f ′(β)

.(20)

From (11), (15)-(20), we conclude that

x ≈ c + x1 + x2.

= x0 + N(x0) + X(x0 + x1).

= β − f(β)
f ′(β)

− 2
f(x0)
f ′(β)

− f(x0 + x1)
f ′(β)

.

Using this, we can suggest and analyze the following two-step iterative method for
solving (1).

Algorithm 3 (AA) For a given x0, compute the approximate solution xn+1 by the
iterative scheme
Predictor-Step

yn = xn − f(xn)
f ′(xn)

, f ′(xn) 6= 0, n = 0, 1, 2, · · · .(21)

zn = − f(yn)
f ′(xn)

,(22)

Corrector-Step

xn+1 = yn + 2zn − f(yn + zn)
f ′(xn)

.(23)

Again using (11) and (15), we have

x3 = N(x0 + x1 + x2)

= −f(x0)
f ′(β)

− f(x0 + x1)
f ′(β)

− f(x0 + x1 + x2)
f ′(β)

.

From (11), (17)-(20), we have

x ≈ c + x1 + x2 + x3

= β − f(β)
f ′(β)

− 2
f(x0)
f ′(β)

− 2
f(x0 + x1)

f ′(β)
− f(x0 + x1 + x2)

f ′(β)
.

Using this, we can suggest and analyze the following iterative method for solving
(1).
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Algorithm 4 For a given x0, compute the approximate solution xn+1 by the iter-
ative scheme
Predictor-Step

yn = xn − f(xn)
f ′(xn)

, f ′(xn) 6= 0, n = 0, 1, 2, · · · .(24)

zn = − f(yn)
f ′(xn)

,(25)

wn = −f(yn + zn)
f ′(xn)

,(26)

Corrector-Step

xn+1 = yn + 2zn + 2wn − f(yn + zn + wn)
f ′(xn)

.(27)

3. Convergence Analysis

Theorem 1. Let β ∈ I be a simple zero of a sufficiently differentiable function
f : I ⊆ R → R for an open interval I. If x0 is sufficiently close to β, then the
three-step iterative method defined by Algorithm 3 has the second-order convergence.

Proof. Let β ∈ I be a simple zero of f . Since f is sufficiently differentiable function,
by expanding f(xn) and f ′(xn) about β, we get

f(xn) = f ′(β)[en + c2e
2
n + c3e

3
n + · · · ],(28)

f ′(xn) = f ′(β)[12c2en + 3c3e
2
n + · · · ],(29)

where ck = fk(β)
k!f ′(β) , k = 1, 2, 3, · · · and en = xn − β.

Now from (28) and (29), we have

f(xn)
f ′(xn)

= en − c2e
2
n − 2(c3 + c2

2)e
3
n − (3c4 + 5c2c3)e4

n + · · · .(30)

From (18) and (30), we have

yn = β + c2e
2
n + 2(c3 + c2

2)e
3
n + (3c4 + 5c2c3)e4

n + · · · .(31)

Now expanding f(yn) about β and using (31), we get

f(yn) = f ′(β)[c2e
2
n + 2(c3 + c2

2)e
3
n + (3c4 + 5c2c3)e4

n + · · · ].(32)

Now from (29) and (32), we have

zn = −[c2e
2
n + (2c3 + 4c2

2)e
3
n + (3c4 + 12c2c3 + 4c3

2)e
4
n + · · · ].(33)
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Now again expanding f(yn + zn) about β and using (31) and (33), we have

f(yn + zn) = f ′(β)[−2c2
2e

3
n + (−4c3

2 − 7c2c3)e4
n + · · · ].(34)

From (29) and (34), we get

f(yn + zn)
f ′(xn)

= 2c2
2e

3
n + 7c2c3e

4
n + · · · .(35)

From (23), (33) and (35), one obtains

en+1 = c2e
2
n + 2(c3 + 4c2

2)e
3
n + · · · .(36)

Hence it is proved. ¤

Theorem 2. Let β ∈ I be a simple zero of a sufficiently differentiable function
f : I ⊆ R → R for an open interval I. If x0 is sufficiently close to β, then the
four-step iterative method defined by Algorithm 4 has the second-order convergence.

Proof. From (26) and (35), we have

wn = 2c2
2e

3
n + 7c2c3e

4
n + · · · .(37)

Now again expanding f(yn + zn +wn) about β and using (23), (25) and (37), we get

f(yn + zn + wn) = f ′(β)[−4c3
2e

4
n + (−17c2

2c3 − 8c4
2)e

5
n + · · · ].(38)

From (29) and (38), we have

f(yn + zn + wn)
f ′(xn)

= −4c3
2e

4
n − 17c2

2c3e
5
n + · · · .(39)

From (27), (31), (33), (37) and (39), one obtains

en+1 = 4c2e
2
n + (8c3 + 24c2

2)e
3
n + · · · .(40)

Hence it is proved. ¤

4. Numerical Examples

We present some examples to illustrate the efficiency of the new developed three-
step iterative methods. We compare the Newton method (NM), the method (NR1)
[14], the method (NR2) [15] and the method (AA). Put ε = 10−15.

The following stopping criteria is used for computer programs

(1) |xn+1 − xn| < ε,
(2) |f(xn+1)| < ε.
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As for the convergence criteria, it was required that the distance of two consec-
utive approximations δ for the zero was less than 10−15. Also displayed are the
number of iterations (IT) to approximate the zero, the approximate zero x0 and the
value f(x0) and δ (see Table 1).

The examples are the same as in Chun [6]:

F1(x) = sin2 x− x2 + 1,

F2(x) = x2 − ex − 3x + 2,

F3(x) = cosx− x,

F4(x) = (x− 1)3 − 1,

F5(x) = x3 − 10,
F6(x) = x · ex2 − sin2 x + 3 cos x + 5,

F7(x) = ex2+7x−30 − 1.

Table 1

IT xn f(xn) δ
F1 : x0 = 1
NM 7 1.404491648215341 3.331e-16 3.059e-13
NR1 6 1.404491648215341 -8.882e-16 2.22e-16
NR2 8 1.404491648215341 -4.441e-16 7.349e-14
AA 8 1.404491648215341 3.331e-16 4.244e-11

F2 : x0 = 2
NM 6 0.257530285439861 0 9.864e-14
NR1 5 0.257530285439861 0 2.209e-12
NR2 7 0.257530285439861 4.4409e-16 5.884e-15
AA 6 0.257530285439861 -4.441e-16 8.109e-08

F3 : x0 = 1.7
NM 5 0.739085133215161 -4.441e-16 3.259e-08
NR1 4 0.739085133215161 0 1.849e-08
NR2 6 0.739085133215161 0 7.627e-14
AA 5 0.739085133215161 1.1102e-16 1.827e-08

F4 : x0 = 3.5
NM 8 2 0 2.878e-11
NR1 7 2 0 2.2204e-15
NR2 6 2 0 6.702e-11
AA 7 2 0 2.22e-15
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F5 : x0 = 1.5
NM 7 2.1544346900318837217592935665 4.83e-13 2.741e-07
NR1 6 2.1544346900318837217592935665 1.776e-15 1.761e-08
NR2 7 2.1544346900318837217592935665 1.776e-15 1.770e-10
AA 7 2.1544346900318837217592935665 -1.776e-14 5.087e-08

F6 : x0 = −2
NM 9 -1.207647827130918927009416584 -2.664e-15 4.26e-11
NR1 8 -1.207647827130918927009416584 -6.217e-15 3.002e-09
NR2 7 -1.207647827130918927009416584 -2.664e-15 2.273e-10
AA 6 -1.207647827130918927009416584 1.687e-14 1.980e-08

F7 : x0 = 3.5
NM 13 3 0 2.53e-13
NR1 11 3 0 1.079e-09
NR2 8 3 -7.105e-15 1.057e-10
AA 9 3 0 3.553e-15

5. Conclusions

We have suggested a family of one-step, two-step, three-step and four-step it-
erative methods for solving nonlinear equations. It is important to note that the
implementation of these multi-step methods does not require the computation of
higher order derivatives compared to most other methods of the same order.
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