DOI QR코드

DOI QR Code

그래프 이론을 적용한 벼 병원균 확산 공간 연결망 분석

Spatial Network Analysis of Pathogen Spread in Korean Rice Farming Areas Using Graph Theory

  • 강완모 (서울대학교 환경대학원 환경계획학과) ;
  • 이도원 (서울대학교 환경대학원 환경계획학과) ;
  • 박찬열 (국립산림과학원 산림생태연구과)
  • Kang, Wanmo (Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University) ;
  • Lee, Dowon (Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University) ;
  • Park, Chan-Ryul (Division of Forest Ecology, Korea Forest Research Institute)
  • 투고 : 2013.07.03
  • 심사 : 2013.10.11
  • 발행 : 2013.12.30

초록

기후 변화로 인해 벼 병해충 예찰과 방제가 더욱 어려워지면서 주곡인 쌀의 생산량이 지속적으로 감소하고 있다. 이 연구에서는 그래프 이론을 적용하여 전국 시 군 지역을 대상으로 행정구역 단위의 벼 병원균 확산 공간 연결망을 정량적으로 분석하였다. 병원균 확산 연결망의 중추적 경로는 서해 연안의 행정구역 간에 연결된 링크들인 것을 확인할 수 있었다. 서해 연안 지역들은 병원균에 대한 경관 저항성이 매우 낮았고, 서해 연안의 핵심지역들과 경남 경북의 핵심지역들을 연결시키는 허브지역들을 도출할 수 있었다. 연구 결과를 통해 병원균 확산을 예측하고, 병원균이 발생하였을 때 확산을 방지하기 위해 우선적으로 방제되어야 하는 지역이 어디인지를 구분할 수 있었다. 연구결과는 병해충 방제 공동대응을 위한 행정구역 단위의 방제 구역 할당과 통합적인 병해충 관리계획 수립에 있어 유용한 농업환경지리 공간 자료로 활용될 수 있을 것이다.

The spread and expansion of pests and pathogens due to climate change have caused considerable reduction of rice yield in agricultural landscapes. This study was conducted to quantitatively analyze the spread of rice pathogens carried by insect pests on spatial network in South Korea using graph-theoretic methods. We identified the connectivity "backbone" of pathogen spread network among the cities along the coastal area of West Sea. In addition, we graphically represented 1) the core areas that can cause local and regional outbreaks of pathogens; and 2) the areas that act as bottlenecks in the spread of pathogen which can link the core areas. Especially, the cities in the coastal areas of West Sea that have the high density of rice crops, represented a low spread resistance to pathogen infection. These results may suggest insights into planning the integrated pest management possibly through regional collaboration.

키워드

참고문헌

  1. Batagelj, V., and A. Mrvar, 2008: Pajek 1.24. Software for large network analysis. Available from http://vlado.fmf.uni-lj.si/pub/networks/pajek/ (accessed Jan 2011)
  2. Bunn, A. G., D. L. Urban, and T. H. Keitt, 2000: Landscape connectivity: a conservation application of graph theory. Environmental Management 59, 265-278.
  3. Cammell, M. E., and J. D. Knight, 1992: Effects of climatic change on the population dynamics of crop pests. Advances in Ecological Research 22, 117-162. https://doi.org/10.1016/S0065-2504(08)60135-X
  4. Dyck, V. A., B. C. Misra, S. Alam, C. N. Chen, C. Y. Hsien, and R. S. Rejesus, 1979: Ecology of the brown planthopper in the tropics. Brown planthopper: threat to rice production in Asia. IRRI (Ed.), International Rice Research Institute, 61-98.
  5. Estrada, E., and O. Bodin, 2008: Using network centrality measures to manage landscape connectivity. Ecological Applications 18(7), 1810-1825. https://doi.org/10.1890/07-1419.1
  6. Freeman, L., 1979: Centrality in social networks: conceptual clarification. Social Networks 1(3), 215-239.
  7. Galpern, P., M. Manseau, and A. Fall, 2011: Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biological Conservation 144, 44-55. https://doi.org/10.1016/j.biocon.2010.09.002
  8. Kang, W., and C. R. Park, 2011: Quantitative analysis of Seoul green space network with the application of graph theory. Korean Journal of Environment and Ecology 25(3), 412-420. (in Korean with English abstract)
  9. Kim, Y. R., 2009: Administration inspection report on climate change and pest diseases by Rural Development Administration, Suwon. (in Korean)
  10. Kiritani, K., 1979: Pest-management in rice. Annual Review of Entomology 24, 279-312. https://doi.org/10.1146/annurev.en.24.010179.001431
  11. Margosian, M. L., K. A. Garrett, J. M. Shawn Hutchinson, and K. A. With, 2009: Connectivity of the American agricultural landscape: assessing the national risk of crop pest and disease spread. BioScience 59, 141-151. https://doi.org/10.1525/bio.2009.59.2.7
  12. McCune, B., and J. B. Grace, 2002: Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon, USA.
  13. Ohta, S., and A. Kimura, 2007: Impacts of climate changes on the temperature of paddy waters and suitable land for rice cultivation in Japan. Agricultural and Forest Meteorology 147, 186-98. https://doi.org/10.1016/j.agrformet.2007.07.009
  14. R Development Core Team, 2010: R: a language and environment for statistical computing, R Foundation for Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/
  15. Saxena, R. C., and A. A. Barrion, 1983: Biotypes of the rice brown planthopper. Korean Journal of Plant Protection 22(2), 49-51.
  16. Song, Y. H., 2007: Studies on the prediction models for the outbreaks of the long range migratory planthoppers on rice. Rural Development Administration, Suwon, 90pp. (in Korean)
  17. Urban, D. L., E. S. Minor, E. Treml, and R. Schick, 2009: Graph models of habitat mosaics. Ecology Letters 12, 260-273. https://doi.org/10.1111/j.1461-0248.2008.01271.x