DOI QR코드

DOI QR Code

Receptor for Advanced Glycation Endproducts (RAGE), Its Ligands, and Soluble RAGE: Potential Biomarkers for Diagnosis and Therapeutic Targets for Human Renal Diseases

  • Lee, Eun Ji (Department of Biological Science, Sookmyung Women's University) ;
  • Park, Jong Hoon (Department of Biological Science, Sookmyung Women's University)
  • Received : 2013.11.04
  • Accepted : 2013.11.22
  • Published : 2013.12.31

Abstract

Receptor for advanced glycation endproducts (RAGE) is a multi-ligand receptor that is able to bind several different ligands, including advanced glycation endproducts, high-mobility group protein (B)1 (HMGB1), S-100 calcium-binding protein, amyloid-${\beta}$-protein, Mac-1, and phosphatidylserine. Its interaction is engaged in critical cellular processes, such as inflammation, proliferation, apoptosis, autophagy, and migration, and dysregulation of RAGE and its ligands leads to the development of numerous human diseases. In this review, we summarize the signaling pathways regulated by RAGE and its ligands identified up to date and demonstrate the effects of hyper-activation of RAGE signals on human diseases, focused mainly on renal disorders. Finally, we propose that RAGE and its ligands are the potential targets for the diagnosis, monitoring, and treatment of numerous renal diseases.

Keywords

References

  1. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992;267: 14998-15004.
  2. Reddy S, Bichler J, Wells-Knecht KJ, Thorpe SR, Baynes JW. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 1995;34:10872-10878. https://doi.org/10.1021/bi00034a021
  3. Ramasamy R, Yan SF, Schmidt AM. The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vascul Pharmacol 2012;57:160-167. https://doi.org/10.1016/j.vph.2012.06.004
  4. Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013;25:2185-2197. https://doi.org/10.1016/j.cellsig.2013.06.013
  5. Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, et al. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol 1993;143:1699-1712.
  6. Ramasamy R, Yan SF, Schmidt AM. RAGE: therapeutic target and biomarker of the inflammatory response: the evidence mounts. J Leukoc Biol 2009;86:505-512. https://doi.org/10.1189/jlb.0409230
  7. Chuah YK, Basir R, Talib H, Tie TH, Nordin N. Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflam 2013;2013:403460.
  8. Calcutt NA, Cooper ME, Kern TS, Schmidt AM. Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials. Nat Rev Drug Discov 2009;8:417-429. https://doi.org/10.1038/nrd2476
  9. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, et al. Functions of S100 proteins. Curr Mol Med 2013;13:24-57. https://doi.org/10.2174/156652413804486214
  10. Salama I, Malone PS, Mihaimeed F, Jones JL. A review of the S100 proteins in cancer. Eur J Surg Oncol 2008;34:357-364. https://doi.org/10.1016/j.ejso.2007.04.009
  11. Sugaya K, Fukagawa T, Matsumoto K, Mita K, Takahashi E, Ando A, et al. Three genes in the human MHC class III region near the junction with the class II: gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3. Genomics 1994;23:408-419. https://doi.org/10.1006/geno.1994.1517
  12. González I, Romero J, Rodríguez BL, Pérez-Castro R, Rojas A. The immunobiology of the receptor of advanced glycation end-products: trends and challenges. Immunobiology 2013;218: 790-797. https://doi.org/10.1016/j.imbio.2012.09.005
  13. Hudson BI, Carter AM, Harja E, Kalea AZ, Arriero M, Yang H, et al. Identification, classification, and expression of RAGE gene splice variants. FASEB J 2008;22:1572-1580. https://doi.org/10.1096/fj.07-9909com
  14. Maillard-Lefebvre H, Boulanger E, Daroux M, Gaxatte C, Hudson BI, Lambert M. Soluble receptor for advanced glycation end products: a new biomarker in diagnosis and prognosis of chronic inflammatory diseases. Rheumatology (Oxford) 2009;48:1190-1196. https://doi.org/10.1093/rheumatology/kep199
  15. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 2000;275:40096-40105. https://doi.org/10.1074/jbc.M006993200
  16. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 2005;83: 876-886. https://doi.org/10.1007/s00109-005-0688-7
  17. Schmidt AM, Yan SD, Yan SF, Stern DM. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 2000;1498:99-111. https://doi.org/10.1016/S0167-4889(00)00087-2
  18. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997;336:1066-1071. https://doi.org/10.1056/NEJM199704103361506
  19. Yao D, Brownlee M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 2010;59:249-255. https://doi.org/10.2337/db09-0801
  20. Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, et al. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 2009;7:17. https://doi.org/10.1186/1479-5876-7-17
  21. Higashi T, Sano H, Saishoji T, Ikeda K, Jinnouchi Y, Kanzaki T, et al. The receptor for advanced glycation end products mediates the chemotaxis of rabbit smooth muscle cells. Diabetes 1997;46:463-472. https://doi.org/10.2337/diab.46.3.463
  22. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 1999;84:489-497. https://doi.org/10.1161/01.RES.84.5.489
  23. Monnier VM, Sell DR, Nagaraj RH, Miyata S, Grandhee S, Odetti P, et al. Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. Diabetes 1992;41 Suppl 2:36-41. https://doi.org/10.2337/diab.41.2.S36
  24. Tanji N, Markowitz GS, Fu C, Kislinger T, Taguchi A, Pischetsrieder M, et al. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J Am Soc Nephrol 2000;11:1656-1666.
  25. Bohlender JM, Franke S, Stein G, Wolf G. Advanced glycation end products and the kidney. Am J Physiol Renal Physiol 2005; 289:F645-F659. https://doi.org/10.1152/ajprenal.00398.2004
  26. Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev 2001;17:436-443. https://doi.org/10.1002/dmrr.233
  27. Simm A, Munch G, Seif F, Schenk O, Heidland A, Richter H, et al. Advanced glycation endproducts stimulate the MAP-kinase pathway in tubulus cell line LLC-PK1. FEBS Lett 1997;410: 481-484. https://doi.org/10.1016/S0014-5793(97)00644-3
  28. Saito A, Takeda T, Sato K, Hama H, Tanuma A, Kaseda R, et al. Significance of proximal tubular metabolism of advanced glycation end products in kidney diseases. Ann N Y Acad Sci 2005; 1043:637-643. https://doi.org/10.1196/annals.1333.072
  29. Ulloa L, Batliwalla FM, Andersson U, Gregersen PK, Tracey KJ. High mobility group box chromosomal protein 1 as a nuclear protein, cytokine, and potential therapeutic target in arthritis. Arthritis Rheum 2003;48:876-881. https://doi.org/10.1002/art.10854
  30. Gugliucci A, Bendayan M. Renal fate of circulating advanced glycated end products (AGE): evidence for reabsorption and catabolism of AGE-peptides by renal proximal tubular cells. Diabetologia 1996;39:149-160. https://doi.org/10.1007/BF00403957
  31. Zhu P, Xie L, Ding HS, Gong Q, Yang J, Yang L. High mobility group box 1 and kidney diseases (Review). Int J Mol Med 2013;31:763-768. https://doi.org/10.3892/ijmm.2013.1286
  32. Lin L, Zhong K, Sun Z, Wu G, Ding G. Receptor for advanced glycation end products (RAGE) partially mediates HMGB1- ERKs activation in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2012;138:11-22. https://doi.org/10.1007/s00432-011-1067-0
  33. Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update. Vascul Pharmacol 2013;58:259-271. https://doi.org/10.1016/j.vph.2013.01.001
  34. Singh R, Alavi N, Singh AK, Leehey DJ. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation. Diabetes 1999;48:2066-2073. https://doi.org/10.2337/diabetes.48.10.2066
  35. Ohshiro Y, Ma RC, Yasuda Y, Hiraoka-Yamamoto J, Clermont AC, Isshiki K, et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes 2006;55:3112-3120. https://doi.org/10.2337/db06-0895
  36. Asaba K, Tojo A, Onozato ML, Goto A, Quinn MT, Fujita T, et al. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 2005;67:1890-1898. https://doi.org/10.1111/j.1523-1755.2005.00287.x
  37. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol 2008;52:1527-1539. https://doi.org/10.1016/j.jacc.2008.07.051
  38. Vlassara H, Uribarri J, Cai W, Goodman S, Pyzik R, Post J, et al. Effects of sevelamer on HbA1c, inflammation, and advanced glycation end products in diabetic kidney disease. Clin J Am Soc Nephrol 2012;7:934-942. https://doi.org/10.2215/CJN.12891211
  39. Willemsen S, Hartog JW, Heiner-Fokkema MR, van Veldhuisen DJ, Voors AA. Advanced glycation end-products, a pathophysiological pathway in the cardiorenal syndrome. Heart Fail Rev 2012;17:221-228. https://doi.org/10.1007/s10741-010-9225-z
  40. Willemsen S, Hartog JW, Hummel YM, van Ruijven MH, van der Horst IC, van Veldhuisen DJ, et al. Tissue advanced glycation end products are associated with diastolic function and aerobic exercise capacity in diabetic heart failure patients. Eur J Heart Fail 2011;13:76-82. https://doi.org/10.1093/eurjhf/hfq168
  41. Yamada K, Miyahara Y, Hamaguchi K, Nakayama M, Nakano H, Nozaki O, et al. Immunohistochemical study of human advanced glycosylation end-products (AGE) in chronic renal failure. Clin Nephrol 1994;42:354-361.
  42. Harris PC, Torres VE. Polycystic kidney disease. Annu Rev Med 2009;60:321-337. https://doi.org/10.1146/annurev.med.60.101707.125712
  43. Ye M, Grant M, Sharma M, Elzinga L, Swan S, Torres VE, et al. Cyst fluid from human autosomal dominant polycystic kidneys promotes cyst formation and expansion by renal epithelial cells in vitro. J Am Soc Nephrol 1992;3:984-994.
  44. Norman J. Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim Biophys Acta 2011;1812:1327-1336. https://doi.org/10.1016/j.bbadis.2011.06.012
  45. Vernon MA, Mylonas KJ, Hughes J. Macrophages and renal fibrosis. Semin Nephrol 2010;30:302-317. https://doi.org/10.1016/j.semnephrol.2010.03.004
  46. Nakamura T, Sato E, Fujiwara N, Kawagoe Y, Yamada S, Ueda Y, et al. Changes in urinary albumin excretion, inflammatory and oxidative stress markers in ADPKD patients with hypertension. Am J Med Sci 2012;343:46-51. https://doi.org/10.1097/MAJ.0b013e31821f0552
  47. Nakamura T, Kawagoe Y, Ueda Y, Yamada S, Koide H. Hemoperfusion treatment in a septic shock patient with autosomal dominant polycystic kidney disease and increased HMGB1 protein levels. Blood Purif 2011;32:139-142. https://doi.org/10.1159/000325731
  48. Park EY, Seo MJ, Park JH. Effects of specific genes activating RAGE on polycystic kidney disease. Am J Nephrol 2010;32: 169-178. https://doi.org/10.1159/000315859
  49. Li G, Gentil-Perret A, Lambert C, Genin C, Tostain J. S100A1 and KIT gene expressions in common subtypes of renal tumours. Eur J Surg Oncol 2005;31:299-303. https://doi.org/10.1016/j.ejso.2004.11.009
  50. Lin F, Yang W, Betten M, Teh BT, Yang XJ; French Kidney Cancer Study Group. Expression of S-100 protein in renal cell neoplasms. Hum Pathol 2006;37:462-470. https://doi.org/10.1016/j.humpath.2005.12.008
  51. Hamberg AP, Korse CM, Bonfrer JM, de Gast GC. Serum S100B is suitable for prediction and monitoring of response to chemoimmunotherapy in metastatic malignant melanoma. Melanoma Res 2003;13:45-49. https://doi.org/10.1097/00008390-200302000-00008
  52. Lee SW, Park KH, Park S, Kim JH, Hong SY, Lee SK, et al. Soluble receptor for advanced glycation end products alleviates nephritis in (NZB/NZW)F1 mice. Arthritis Rheum 2013;65:1902-1912. https://doi.org/10.1002/art.37955
  53. Hallam KM, Li Q, Ananthakrishnan R, Kalea A, Zou YS, Vedantham S, et al. Aldose reductase and AGE-RAGE pathways: central roles in the pathogenesis of vascular dysfunction in aging rats. Aging Cell 2010;9:776-784. https://doi.org/10.1111/j.1474-9726.2010.00606.x
  54. Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB, Cartwright K, et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol 2004;24:32-40. https://doi.org/10.1159/000075627
  55. Williams ME, Bolton WK, Khalifah RG, Degenhardt TP, Schotzinger RJ, McGill JB. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol 2007;27:605-614. https://doi.org/10.1159/000108104
  56. Lan HY. Transforming growth factor-beta/Smad signalling in diabetic nephropathy. Clin Exp Pharmacol Physiol 2012;39: 731-738. https://doi.org/10.1111/j.1440-1681.2011.05663.x

Cited by

  1. Complexity of Danger: The Diverse Nature of Damage-associated Molecular Patterns vol.289, pp.51, 2014, https://doi.org/10.1074/jbc.R114.619304
  2. Anti-high mobility group box-1 monoclonal antibody treatment provides protection against influenza A virus (H1N1)-induced pneumonia in mice vol.19, pp.1, 2015, https://doi.org/10.1186/s13054-015-0983-9
  3. Redox Signaling in Diabetic Nephropathy: Hypertrophy versus Death Choices in Mesangial Cells and Podocytes vol.2015, pp.1466-1861, 2015, https://doi.org/10.1155/2015/604208
  4. RAGE Deficiency Impairs Bacterial Clearance in Murine Staphylococcal Sepsis, but Has No Significant Impact on Staphylococcal Septic Arthritis vol.11, pp.12, 2016, https://doi.org/10.1371/journal.pone.0167287
  5. Transplantation and Damage-Associated Molecular Patterns (DAMPs) vol.16, pp.12, 2016, https://doi.org/10.1111/ajt.13963
  6. Increase of Soluble RAGE in Cerebrospinal Fluid following Subarachnoid Haemorrhage vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/7931534
  7. Receptor for advanced glycation end product blockade enhances the chemotherapeutic effect of cisplatin in tongue squamous cell carcinoma by reducing autophagy and modulating the Wnt pathway vol.28, pp.2, 2017, https://doi.org/10.1097/CAD.0000000000000451
  8. Lipid Deposition in Kidney Diseases: Interplay Among Redox, Lipid Mediators, and Renal Impairment pp.1557-7716, 2017, https://doi.org/10.1089/ars.2017.7066
  9. Effects of RAGE Gene Polymorphisms on the Risk and Progression of Hepatocellular Carcinoma vol.94, pp.34, 2015, https://doi.org/10.1097/MD.0000000000001396
  10. Danger-Associated Molecular Patterns Derived From the Extracellular Matrix Provide Temporal Control of Innate Immunity vol.66, pp.4, 2018, https://doi.org/10.1369/0022155417740880
  11. Origin and Consequences of Necroinflammation vol.98, pp.2, 2018, https://doi.org/10.1152/physrev.00041.2016
  12. RAGE in the pathophysiology of skeletal muscle pp.21905991, 2018, https://doi.org/10.1002/jcsm.12350
  13. Tocotrienol-Rich Vitamin E from Palm Oil (Tocovid) and Its Effects in Diabetes and Diabetic Nephropathy: A Pilot Phase II Clinical Trial vol.10, pp.9, 2018, https://doi.org/10.3390/nu10091315
  14. Alzheimer's Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits vol.12, pp.1662-453X, 2018, https://doi.org/10.3389/fnins.2018.00383
  15. Cytokine–Ion Channel Interactions in Pulmonary Inflammation vol.8, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2017.01644
  16. RAGE Signaling in Skeletal Biology vol.17, pp.1, 2019, https://doi.org/10.1007/s11914-019-00499-w
  17. Nicotinamide Improves Functional Recovery via Regulation of the RAGE/JNK/NF-κB Signaling Pathway after Brain Injury vol.8, pp.2, 2019, https://doi.org/10.3390/jcm8020271