The Value of Delayed $^{18}F$-FDG PET/CT Imaging for Differentiating Axillary Lymph Nodes in Breast Cancers

유방암 환자에서 액와 림프절 진단을 위한 $^{18}F$-FDG PET/CT 지연 검사의 유용성

  • Ji, Young-Sik (Dept. of Nuclear Medicine, Dongnam Institute of Radiological & Medical Sciences Cancer Center) ;
  • Son, Ju-Cheol (Dept. of Nuclear Medicine, Dongnam Institute of Radiological & Medical Sciences Cancer Center) ;
  • Park, Cheol-Woo (Dept. of Radiological Technology Dong-Eui Institute of Technology)
  • 지영식 (동남권 원자력의학원 핵의학과) ;
  • 손주철 (동남권 원자력의학원 핵의학과) ;
  • 박철우 (동의과학대학교 방사선과)
  • Received : 2013.09.20
  • Accepted : 2013.12.05
  • Published : 2013.12.31

Abstract

Positron emission tomography/computed tomography (PET/CT) imaging with fluorodeoxyglucose (FDG) have been used as a powerful fusion modality in nuclear medicine not only for detecting cancer but also for staging and therapy monitoring. Nevertheless, there are various causes of FDG uptake in normal and/or benign tissues. The purpose of present study was to investigate whether additional delayed imaging can improve the diagnosis to differentiate the rates of FDG uptake at axillary lymph nodes (ALN) between malignant and benign in breast cancer patients. 180 PET/CT images were obtained for 27 patients with ALN uptake. The patients who had radiotherapy and chemotherapy were excluded from the study. $^{18}F$-FDG PET/CT scan at 50 min (early phase) and 90 min (delayed phase) after $^{18}F$-FDG injection were included in this retrospective study. The staging of cancers was confirmed by final clinical according to radiologic follow-up and pathologic findings. The standardized uptake value (SUV) of ALN was measured at the Syngo Acquisition Workplace by Siemens. The 27 patients included 18 malignant and 9 ALN benign groups and the 18 malignant groups were classified into the 3 groups according to number of metastatic ALN in each patient. ALNs were categorized less than or equal 3 as N1, between 4 to 9 as N2 and more than 10 as N3 group. Results are expressed as the mean${\pm}$standard deviation (S.D.) and statistically analyzed by SPSS. As a result, Retention index (RI-SUV max) in metastasis was significantly higher than that in non-metastasis about 5 fold increased. On the other hand, RI-SUV max in N group tended to decrease gradually from N1 to N3. However, we could not prove significance statistically in malignant group with ANOVA. As a consequence, RI-SUV max was good indicator for differentiating ALN positive group from node negative group in breast cancer patients. These results show that dual-time-point scan appears to be useful in distinguishing malignant from benign.

핵의학과에서 $^{18}F$-FDG PET/CT 검사는 종양의 진단 뿐 아니라 치료병기를 설정하는데 중요한 역할을 하고 있다. 하지만 정상 조직이나 양성 종양 간의 FDG 섭취를 초래하는 다양한 요인이 있어 정확한 진단에 혼란을 초래할 수 있다. 본 연구의 목적은 유방암환자에서 $^{18}F$-FDG PET/CT 지연 검사가 악성 종양과 양성 종양을 구별 하는데 있어 유용성을 가지고 있는지에 관하여 알아보고자 함에 있다. 본원을 내원하여 $^{18}F$-FDG PET/CT 검사를 받은 환자 중 방사선 치료나 화학 치료를 받은 환자를 제외한 액와림프절에 FDG섭취를 보인 27명의 환자를 대상으로 하였으며, $^{18}F$-FDG 투여 후 50분 후에 검사를 시행하였고 90분 후에 지연상을 획득했다. 종양의 병기 설정은 방사선 검사나 병리학적 검사를 바탕으로 확정된 결과를 바탕으로 분류 하였으며, 액와 림프절의 SUV는 Siemens사의 Syngo Aquisition Workplace로 측정하였다. 27명의 환자는 18명의 악성종양 군과 9명의 양성종양 군으로 분류하였고 악성종양 군은 액와림프절의 개수에 따라 1-3개는 N1, 4-9개는 N2, 10개 이상은 N3로 분류 하였다. 실험 결과는 평균${\pm}$표준편차로 표현하였고, SPSS (V.18 Inc., USA)를 사용하여 통계분석을 실행하였다. 50분 검사와 90분 검사 간의 비교 시, 악성종양 군의 RI-SUVmax는 양성종양 군에 비해 5배 이상의 증가를 보였다. N그룹에서의 RI-SUVmax는 N1에서 N3로 갈수록 점점 감소되는 경향을 보였지만 통계적 유의성을 확인 할 수 없었다. 그럼에도 불구하고 유방암 환자에서 RI-SUVmax는 액와림프절의 악성과 양성을 판단하는 좋은 지표가 되었고 이를 구별하는데 유용할 것으로 사료된다.

Keywords

References

  1. Rigo P, Paulus P, Kaschten BJ, et al : Oncological applications of positron emission tomography with fluorine-18 fluorodeoxy-glucose, Eur. J. Nucl. Med., 23(4), 1641-1674, 1996 https://doi.org/10.1007/BF01249629
  2. Flier JS, Mueckler MM, Usher P, Lodish HF : Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes, Science, 235(4795), 1492-1495, 1987 https://doi.org/10.1126/science.3103217
  3. Monakhov NK, Neistadt EL, Shavlovskil MM, Shvartsman AL, Neifakh SA : Physicochemical properties and isoenzyme composition of hexokinase from normal and malignant human tissues, J. Natl. Cancer. Inst., 61(1), 27-34, 1978 https://doi.org/10.1093/jnci/61.1.27
  4. Pauwels EK, Ribeiro MJ, Stoot JH, Mcready VR, Bourguignon M, Maziere B : FDG accumulation and tumor biology, Nucl. Med. Biol., 25(4), 317-32, 1998 https://doi.org/10.1016/S0969-8051(97)00226-6
  5. Higashi K, Ueda Y, Seki H, et al : Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma, J. Nucl. Med., 39(6), 1016-1020, 1998
  6. Ichiya Y, Kuwabara Y, Sasaki M, et al : FDG-PET in infectious lesions: The detection and assessment of lesion activity, Ann. Nucl. Med., 10(2), 185-191, 1996 https://doi.org/10.1007/BF03165391
  7. Clayton F, Hopkins CL : Pathologic correlates of prognosis in lymph node-positive breast carcinomas, Cancer., 71(5), 1780-1790, 1993 https://doi.org/10.1002/1097-0142(19930301)71:5<1780::AID-CNCR2820710512>3.0.CO;2-2
  8. Greco M, Crippa F, Agresti R, et al : Axillary lymph node staging in breast cancer by 2-fluoro- 2-deoxy-D-glucose-positron emission tomography: clinical evaluation and alternative management, J. Natl. Cancer Inst., 93(8), 630-635, 2001 https://doi.org/10.1093/jnci/93.8.630
  9. Kumar R, Loving VA, chuhan A, Zhuang H, Mitchell S, Alavi A : Potential of dual- time-point imaging to improve breast cancer diagnosis with 18F-FDG PET, J. Nucl. Med., 46(11), 1819-1824, 2005