초록
본 논문에서는 Electrocorticogram(ECoG) 신호를 이용하여 손과 팔꿈치의 움직임을 추론하는 방법을 제안한다. 환자로부터 다수의 채널을 이용하여 표면 근전도 신호와 ECoG 신호를 동시에 취득하였다. 추론하는 동작은 손을 쥐었다 펴는 동작과 팔꿈치를 안으로 굽히는 동작이며, 외부 자극에 의해 동작을 수행하는 방법 대신 환자의 자유의지에 의해 동작을 수행하게 하였다. 표면 근전도 신호를 이용하여 동작을 수행한 운동 시점을 찾고, ECoG 신호를 이용하여 동작을 추론한다. 각 동작의 특징을 추출하기 위하여 ECoG 신호를 전체 대역을 포함한 ${\delta}$, ${\Theta}$, ${\alpha}$, ${\beta}$, ${\gamma}$ 총 6개의 대역을 나누어 정보 엔트로피를 구하고, 최대우도추정법을 사용하여 동작을 추정하였다. 실험 결과 감마대역의 ECoG를 사용할 경우 다른 대역을 사용할 때 보다 높은 평균 74%의 성능을 보이며, 다른 대역보다 감마 대역에서 높은 추정 성공률을 보였다. 또한 운동 시점을 기준으로 3개의 시간 구간으로 나누어 준비전위를 포함하는 'before' 구간과 'onset' 구간을 비교하였다. 'before' 구간과 'onset' 구간에서 추정 성공률은 각각 66%, 65%로 준비전위를 이용할 수 있다는 것을 알 수 있었다.
In this paper, a method of estimating hand and elbow movements using electrocorticogram (ECoG) signals is proposed. Using multiple channels, surface electromyogram (EMG) signals and ECoG signals were obtained from patients simultaneously. The estimated movements were those to close and then open the hand and those to bend the elbow inward. The patients were encouraged to perform the movements in accordance with their free will instead of after being induced by external stimuli. Surface EMG signals were used to find movement time points, and ECoG signals were used to estimate the movements. To extract the characteristics of the individual movements, the ECoG signals were divided into a total of six bands (the entire band and the ${\delta}$, ${\Theta}$, ${\alpha}$, ${\beta}$, and ${\gamma}$ bands) to obtain the information entropy, and the maximum likelihood estimation method was used to estimate the movements. The results of the experiment showed the performance averaged 74% when the ECoG of the gamma band was used, which was higher than that when other bands were used, and higher estimation success rates were shown in the gamma band than in other bands. The time of the movements was divided into three time sections based on movement time points, and the "before" section, which included the readiness potential, was compared with the "onset" section. In the "before" section and the "onset" section, estimation success rates were 66% and 65%, respectively, and thus it was determined that the readiness potential could be used.