DOI QR코드

DOI QR Code

Gene analysis of galectin-1, innate immune response gene, in olive flounder Paralichthys olivaceus at different developmental stage

넙치, Paralichthys olivaceus 발생단계별 galectin-1 유전자의 발현 분석

  • Jang, Min Seok (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Lee, Young Mee (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Yang, Hyun (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Lee, Jeong-Ho (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Noh, Jae Koo (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Kim, Hyun Chul (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Park, Choul-Ji (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Park, Jong-Won (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Hwang, In Joon (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Kim, Sung Yeon (Genetics and Breeding Research Center, National Fisheries Research and Development Institute)
  • 장민석 (국립수산과학원 육종연구센터) ;
  • 이영미 (국립수산과학원 육종연구센터) ;
  • 양현 (국립수산과학원 육종연구센터) ;
  • 이정호 (국립수산과학원 육종연구센터) ;
  • 노재구 (국립수산과학원 육종연구센터) ;
  • 김현철 (국립수산과학원 육종연구센터) ;
  • 박철지 (국립수산과학원 육종연구센터) ;
  • 박종원 (국립수산과학원 육종연구센터) ;
  • 황인준 (국립수산과학원 육종연구센터) ;
  • 김성연 (국립수산과학원 육종연구센터)
  • Received : 2013.10.16
  • Accepted : 2013.11.25
  • Published : 2013.12.31

Abstract

The innate immune response is fundamental defense response of vertebrates and invertebrates. Especially, the innate immune response important for larvae that lack of resistance to infectious diseases in the early stages. Galectin is one of the kinds of lectin and presents in the fish mucous that involves innate immune response. Galectin have been studied from various fishing species, but expression analysis of galectin is still unclear during early developmental stage in olive flounder. In this study, we investigated gene expression of galectin-1 from various developmental stage and tissues. We excised several tissues including the muscle, fin, eye, gill, brain, stomach, intestine, kidney, spleen and liver from adult olive flounder and confirmed gene expression of galectin-1 using RT-PCR and quantitative real-time PCR. Expression of galectin-1 was significantly higher in muscle, stomach and intestinal tissue than other tissue in adult fish (5 and 29 months). Also, galectin-1 gene was detected from 0 DAH and gradually increased to 35 DAH and since then decreased after stomach development period. Induction of galectin-1 during the early developmental stage suggest that muscle, fin and eye tissue is formed and begins the secretion of galectin this period. In addition, increased expression levels at 35 DAH suggest that due to complete formation of stomach and intestine, increase of secretion and activation of enzyme. This study shows that expression of galectin-1 during early developmental stages and adult period in olive flounder and can be expect that galectin-1 play essental role in the innate immune system throughout the whole life time. Galectin-1 is primary barrier such as skin and digestive tissue against pathogen infection, also digestive tract developmental period is important for pathogen invasion can be expected that it will serve. Mass mortality due to the disease in seed production is continuing damage, therefore these result will be meaningful about infectious disease during early developmental stages as a basic data for the study.

선천성 면역반응은 감염성 질병에 대한 저항력이 부족한 초기 발달단계의 자치어에게 중요하다. 특히 lectin은 선천성 면역반응에 많은 기여를 하고 있으며 종류 또한 다양하다. Lectin의 종류 중 하나인 galectin은 어류 점액 내에 존재하며 선천적으로 외부 병원체로부터 숙주를 보호하는 기능을 지니고 있다. 하지만 어류 galectin과 초기발생단계 시기와 관련된 연구들은 부족한 실정이다. 본 연구는 넙치에서 발현되는 galecin-1을 통하여 자치어의 초기발생단계별 그리고 성어의 조직별 발현을 조사하였다. 초기발생단계별 galectin 발현을 조사한 결과, 부화 전 수정란의 낭배기부터 galectin-1 유전자의 발현이 시작되었으며, 부화 후 25일까지 서서히 증가하였다. 부화 후 30~35일에 galectin-1 유전자의 발현량이 급격하게 증가하였고, 그 이후의 galecin-1 유전자의 발현량은 서서히 감소하였다. 성어 (5개월령, 29개월령)의 조직별 galectin 발현을 조사한 결과, 근육, 장, 지느러미, 위, 눈 조직 순서로 높게 발현하였고, 이외의 조직에서는 발현이 나타나지 않았다. 초기발생단계에서 galectin-1의 발현이 증가되는 것은 낭배기부터 넙치의 근육, 지느러미 그리고 눈 조직이 형성되고 galectin의 분비가 시작되어 기능을 나타내기 때문인 것으로 추측된다. 부화 후 30일부터 galectin의 발현량이 많이 증가하는 것은 장과 위 조직이 활성화됨에 따라 점액의 분비량이 증가하여 galectin의 발현량 또한 증가하는 것으로 판단된다. 이로써 넙치 초기발생단계 시기의 galectin-1 유전자의 발현패턴과 galectin이 점액 내에 다량 포함되어 있는 것을 확인하였으며, galectin의 발현은 선천적 면역반응으로 넙치의 초기발생단계 시기와 성어기에 중요할 것으로 판단된다.

Keywords

References

  1. Arason, G.J.: Lectins as defence molecules in vertebrates and invertebrates. Fish Shellfish Immunol., 6:277-289, 1996. https://doi.org/10.1006/fsim.1996.0029
  2. Hemmrich, G., Miller, D.J. and Bosch, T.C.G.: The evolution of immunity: a low-life perspective. Trends Immunol., 28:449-454, 2007. https://doi.org/10.1016/j.it.2007.08.003
  3. Inagawa, H., Kuroda, A., Nishizawa, T., Honda, T., Ototake, M., Yokomizo, Y., Nakanishi, T. and Soma, G.I.: Cloning and characterisation of tandem-repeat type galectin in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 11:217-231, 2001. https://doi.org/10.1006/fsim.2000.0307
  4. Ingram G.A.: Substances involved in the natural resistance of fish to infection-a review. J. Fish Biol., 16:23-60, 1980. https://doi.org/10.1111/j.1095-8649.1980.tb03685.x
  5. Kamiya, H., Muramoto, K. and Goto, R.: Purification and properties of agglutinins from conger eel, Conger myriaster (Brevoort), skin mucus. Dev. Comp. Immunol., 12:309-318, 1988. https://doi.org/10.1016/0145-305X(88)90007-9
  6. Kim, D.H., Han, H.J., Kim, S.M., Lee, D.C. and Park, S.I.: Bacterial enteritis and the development of the larval digestive tract in olive flounder, Paralichthys olivaceus (Temminck & Schlegel). J. Fish Dis., 27:497-505, 2004. https://doi.org/10.1111/j.1365-2761.2004.00553.x
  7. Kurokawa, T. and Suzuki, T.: Formation of the diffuse pancreas and the development of digestive enzyme synthesis in larvae of the Japanese flounder Paralichthys olivaceus. Aquaculture, 141:267-276, 1996. https://doi.org/10.1016/0044-8486(95)01237-0
  8. Liu, S., Hu, G., Sun, C. and Zhang, S.: Anti-viral activity of galectin-1 from flounder Paralichthys olivaceus. Fish Shellfish Immunol., 34:1463-1469, 2013. https://doi.org/10.1016/j.fsi.2013.03.354
  9. Miwa, S., Yamano, K. and Inui, Y.: Thyroid hormone stimulates gastric development in flounder larvae during metamorphosis. J. Exp. Zoolog. Part A, 261(4):424-430, 1992. https://doi.org/10.1002/jez.1402610409
  10. Munday, B.L. and Nakai, T.: Nodaviruses as pathogens in larval and juvenile marine finfish. World J. Microbiol. Biotechnol., 13(4):375-381. 1997. https://doi.org/10.1023/A:1018516014782
  11. Muramoto, K. and Kamiya, H.: The amino-acid sequence of a lectin from conger eel, Conger myriaster, skin mucus. Biochimica. et. Biophysica. Acta. General Subjects, 1116:129-136, 1992. https://doi.org/10.1016/0304-4165(92)90109-8
  12. Muramoto, K., Kagawa, D., Sato, T., Ogawa, T., Nishida, Y. and Kamiya, H.: Functional and structural characterization of multiple galectins from the skin mucus of conger eel, Conger myriaster. Comp. Biochem. Physiol. Part B, 123:33-45, 1999. https://doi.org/10.1016/S0305-0491(99)00037-1
  13. Nio, J., Kon, Y. and Iwanaga, T.: Differential cellular expression of galectin family mRNAs in the epithelial cells of the mouse digestive tract. J. Histochem. Cytochem., 53(11):1323-1334, 2005. https://doi.org/10.1369/jhc.5A6685.2005
  14. Noshioka, T., Furusawa, T. and Mizuta, Y.: Diseases occurring in marine fish and shellfish hatcheries in Japan (1989-1994). Suisan Zoshoku., 45:285-290, 1997.
  15. Oh, M.J., Jung, S.J. and Kim, Y.J.: Detection of birnavirus from marine cultured fish using polymerase chain reaction (PCR). J. Fish Pathol., 12(1):49-55, 1999.
  16. Oh, M.J., Jung, S.J., Kitamura, S.I., Kim, H.J. and Kang, S.Y.: Viral diseases of olive flounder in Korean hatcheries. J. Ocean Univ. China, 5:45-48, 2006. https://doi.org/10.1007/BF02919372
  17. Ohta, M. and Kawasaki, T.: Complement-dependent cytotoxic activity of serum mannan-binding protein towards mammalian cells with surface-exposed high-mannose type glycans. Glycoconj. J., 11:304-308, 1994. https://doi.org/10.1007/BF00731203
  18. Poisa-Beiro, L., Dios, S., Ahmed, H., Vasta, G.R., Martinez-Lopez, A., Estepa, A., Alonso-Gutierrez, J., Figueras, A. and Novoa, B.: Nodavirus infection of sea bass (Dicentrarchus labrax) Induces up-regulation of Galectin-1 expression with potential anti-inflammatory activity. J. Immunol., 183:6600-6611, 2009. https://doi.org/10.4049/jimmunol.0801726
  19. Russell, S. and Lumsden, J.S.: Function and heterogeneity of fish lectins. Vet. Immunol. Immunopathol., 108:111-120, 2005. https://doi.org/10.1016/j.vetimm.2005.08.004
  20. Suzuki, Y., Tasumi, S., Tsutsui, S., Okamoto, M. and Suetake, H.: Molecular diversity of skin mucus lectins in fish. Comp. Biochem. Physiol. B, 136:723-730, 2003. https://doi.org/10.1016/S1096-4959(03)00178-7
  21. Swierzko, A.S., Cedzynski, M., Domzalska-Popadiuk, I., MacDonald, S.L., Borkowska-Klos, M., Atkinson, A.P., Szala, A., Jopek, A., Jensenius, J.C., Kawakami, M., Szczapa, J., Matsushita, M., Szemraj, J., Turner, M.L. and Kilpatrick, D.C.: Mannan-binding lectin-associated serine protease-2 (MASP-2) in a large cohort of neonates and its clinical associations. Mol. Immunol., 46:1696-1701, 2009. https://doi.org/10.1016/j.molimm.2009.02.022
  22. Vasta, G.R., Ahmed, H., Fink, N.E., Elola, M.T., Marsh, A.G., Snowden A. and Odom, E.W.: Animal lectins as self/non-self recognition molecules. Ann. N. Y. Acad. Sci., 712:55-73. 1994. https://doi.org/10.1111/j.1749-6632.1994.tb33562.x
  23. Vasta, G.R., Ahmed, H., Du, S.J. and Henrikson, D.: Galectins in teleost fish: Zebrafish (Danio rerio) as a model species to address their biological roles in development and innate immunity. Glycoconj. J., 21:503-521, 2004. https://doi.org/10.1007/s10719-004-5541-7
  24. Vasta, G.R.: Roles of galectins in infection. Nat. Rev. Microbiol., 7:424-438, 2009. https://doi.org/10.1038/nrmicro2146

Cited by

  1. Transcriptional analysis of olive flounder lectins in response to VHSV infection vol.29, pp.1, 2016, https://doi.org/10.7847/jfp.2016.29.1.013
  2. Influence of Osmolality and Acidity on Fertilized Eggs and Larvae of Olive Flounder (Paralichthys olivaceus) vol.24, pp.1, 2013, https://doi.org/10.12717/dr.2020.24.1.19