DOI QR코드

DOI QR Code

Fast pyrolysis of Medium-Density Fiberboard Using a Fluidized Bed Reactor

유동층 반응기를 이용한 Medium-Density Fiberboard의 급속 열분해

  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul) ;
  • Park, Kyung-Seon (Graduate School of Energy and Environmental System Engineering, University of Seoul) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University)
  • 박영권 (서울시립대학교 환경공학부) ;
  • 박경선 (서울시립대학교 대학원 에너지환경시스템 공학과) ;
  • 박성훈 (순천대학교 환경공학과)
  • Received : 2013.09.09
  • Accepted : 2013.09.27
  • Published : 2013.12.10

Abstract

Fast pyrolysis of medium-density fiberboard was carried out using a fluidized-bed reactor under various conditions to find an optimum pyrolysis condition. When the pyrolysis temperature was varied between $425^{\circ}C$ and $575^{\circ}C$, the maximum bio-oil yield of 52 wt% was obtained at $525^{\circ}C$. The quality of the bio-oil product increased with increasing pyrolysis temperature. Pyrolysis at a high temperature removed significant amounts of oxygenates and acids, producing more valuable species such as aromatics and phenolics. The main gaseous products were CO and $CO_2$. The yields of CO and $C_1-C_4$ hydrocarbons increased with increasing the pyrolysis temperature.

Medium-density fiberboard의 최적 열분해 조건을 찾기 위해 유동층 반응기를 이용하여 다양한 실험조건에서 급속열분해 실험을 수행하였다. 열분해 온도를 $425^{\circ}C$$575^{\circ}C$ 사이에서 변화시켰을 때, $525^{\circ}C$에서 최대 바이오오일 수율 52 wt%를 얻을 수 있었다. 열분해 온도가 높을수록 생성되는 바이오오일의 품질이 좋은 것으로 나타났다. 높은 온도에서 열분해 반응을 수행할 경우, 상당한 양의 oxygenates 및 acids 물질들이 분해되고, 대신 aromatics와 phenolics 같은 고부가가치 물질들이 생성되었다. 기체상 생성물의 대부분은 CO와 $CO_2$였다. 열분해 온도가 높을수록 CO와 $C_1-C_4$ 탄화수소 생성량이 많았다.

Keywords

References

  1. S. W. Kang, Y. H. Kwak, K. H. Cheon, S. H. Park, J. K. Jeon, and Y. K. Park, Characteristic of RDF char combustion in a bubbling fluidized bed, Appl. Chem. Eng., 22, 429-432 (2011).
  2. I. H. Park, Y. K. Park, Y. M. Lee, W. Bae, Y. H. Kwak, K. H. Cheon, and S. H. Park, RDF gasification using a pilot-scale two-stage gasification system, Appl. Chem. Eng., 22, 286-290 (2011).
  3. K. S. Yoo, S. H. Park, and Y. K. Park, Catalytic pyrolysis of various carbon number feed oil using a spouted bed reactor, Appl. Chem. Eng., 22, 627-630 (2011).
  4. C. H. Ko, S. H. Park, J. K. Jeon, D. J. Suh, K. E. Jeong, and Y. K. Park, Upgrading of biofuel by the catalytic deoxygenation of biomass, Korean J. Chem. Eng., 29, 1657-1665 (2012). https://doi.org/10.1007/s11814-012-0199-5
  5. Y. B. Jo, S. H. Park, J. K. Jeon, and Y. K. Park, Transesterification of soybean oil using KOH/KL zeolite and Ca/Undaria pinnatifida char, Appl. Chem. Eng., 23, 604-607 (2012).
  6. Y. B. Jo, J. K. Jeon, S. H. Park, and Y. K. Park, Transesterification reaction of soybean oil over KF/MgO catalyst, Appl. Chem. Eng., 23, 344-347 (2012).
  7. M. J. Yu, Y. B. Jo, S. G. Kim, Y. K. Lim, J. K. Jeon, S. H. Park, S. S. Kim, and Y. K. Park, Synthesis of biodiesel from an oil fraction separated from food waste leachate, Korean J. Chem. Eng., 28, 2287-2292 (2011). https://doi.org/10.1007/s11814-011-0134-1
  8. J. W. Kim, S. H. Lee, S. S. Kim, S. H. Park, J. K. Jeon, and Y. K. Park, The pyrolysis of waste mandarin residue using thermogravimetric analysis and a batch reactor, Korean J. Chem. Eng., 28, 1867-1872 (2011). https://doi.org/10.1007/s11814-011-0176-4
  9. H. J. Park, K. H. Park, J. K. Jeon, J. Kim, R. Ryoo, K. E. Jeong, S. H. Park, and Y. K. Park, Production of phenolics and aromatics by pyrolysis of miscanthus, Fuel, 97, 379-384 (2012). https://doi.org/10.1016/j.fuel.2012.01.075
  10. Y. M. Kim, H. W. Lee, S. H. Lee, S. S. Kim, S. H. Park, J. K. Jeon, S. D. Kim, and Y. K. Park, Pyrolysis properties and kinetics of mandarin peel, Korean J. Chem. Eng., 28, 2012-2016 (2011). https://doi.org/10.1007/s11814-011-0177-3
  11. H. J. Park, H. S. Heo, J. K. Jeon, J. N. Kim, R. Ryoo, K. E. Jeong, and Y. K. Park, Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites, Appl. Catal. B : Environ., 95, 365-373 (2010). https://doi.org/10.1016/j.apcatb.2010.01.015
  12. H. S. Heo, H. J. Park, J. H. Yim, J. M. Sohn, J. Park, S. S. Kim, C. Ryu, J. K. Jeon, and Y. K. Park, Influence of operation variables on fast pyrolysis of miscanthus sinensis var. purpurascens, Bioresour. Technol., 101, 3672-3677 (2010). https://doi.org/10.1016/j.biortech.2009.12.078
  13. Y. K. Park, S. J. Choi, J. K. Jeon, S. H. Park, R. Ryoo, J. Kim, and K. E. Jeong, Catalytic conversion of waste particle board to bio-oil using nanoporous catalyst, J. Nanosci. Nanotechnol., 12, 5367-5372 (2012). https://doi.org/10.1166/jnn.2012.6412
  14. J. W. Kim, H. W. Lee, I. G. Lee, J. K. Jeon, C. Ryu, S. H. Park, S. C. Jung, and Y. K. Park, Influence of reaction conditions on bio-oil production from pyrolysis of construction waste wood, Renew. Energy, in press.
  15. K. S. Park, H. K. Kang, S. H. Park, S. C. Jung, J. K. Jeon, I. G. Lee, S. C. Kim, and Y. K. Park, Conversion of waste medium density fiberboard over SAPO-11 catalyst, J. Nanoelectron. Optoelectron. Accepted for publication.
  16. B. B. Jin, H. S. Heo, C. Ryu, S. S. Kim, J. K. Jeon, and Y. K. Park, Copyrolysis of block polypropylene with particle board and medium density fiber, Energy Sources Part A, in press.
  17. Y.-C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, and G. W. Huber, Kinetics and mechanism of cellulose pyrolysis, J. Phys. Chem. C, 113, 20097-20107 (2009). https://doi.org/10.1021/jp906702p
  18. A. V. Bridgwater, D. Meier, and D. Radlein, An overview of fast pyrolysis of biomass, Org. Geochem., 30, 1479-1493 (1999). https://doi.org/10.1016/S0146-6380(99)00120-5
  19. L. Qiang, W. Z. Li, and X. F. Zhu, Overview of fuel properties of biomass fast pyrolysis oils, Energy Conv. Manage., 50, 1376-1383 (2009). https://doi.org/10.1016/j.enconman.2009.01.001
  20. C. A. Chen, H. Parkdel, and C. Roy, Production of monomeric phenols by the thermochemical conversion of biomass: a review, Bioresour. Technol., 79, 277-299 (2001). https://doi.org/10.1016/S0960-8524(00)00180-2
  21. Z. Ma, E. Troussard, J. Av. Bokhoven, Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis, Appl. Catal. A : Gen., 423, 130-136 (2012).

Cited by

  1. Effects of dianhydrides on the thermal behavior of linear and crosslinked polyimides vol.132, pp.6, 2014, https://doi.org/10.1002/app.41412
  2. Catalytic Upgrading of Geodae-Uksae 1 over Mesoporous MCM-48 Catalysts vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.1951
  3. Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste vol.24, pp.5, 2017, https://doi.org/10.1007/s10570-017-1252-7
  4. A Review of Current Research on Natural Skin Whitening Products vol.16, pp.4, 2013, https://doi.org/10.20402/ajbc.2018.0243
  5. Fractionation of Waste MDF by Steam Refining vol.25, pp.9, 2020, https://doi.org/10.3390/molecules25092165
  6. Recycling of Waste MDF by Steam Refining: Evaluation of Fiber and Paper Strength Properties vol.12, pp.10, 2021, https://doi.org/10.1007/s12649-021-01391-4
  7. Flammability of engineered wood pyrolysis gases at anaerobic condition vol.125, pp.None, 2013, https://doi.org/10.1016/j.firesaf.2021.103424