DOI QR코드

DOI QR Code

Magnetoencephalography in pediatric epilepsy

  • Kim, Hunmin (Department of Pediatrics, Seoul National University Bundang Hospital) ;
  • Chung, Chun Kee (Department of Neurosurgery, Seoul National University College of Medicine) ;
  • Hwang, Hee (Department of Pediatrics, Seoul National University Bundang Hospital)
  • 투고 : 2013.02.13
  • 심사 : 2013.06.04
  • 발행 : 2013.10.15

초록

Magnetoencephalography (MEG) records the magnetic field generated by electrical activity of cortical neurons. The signal is not distorted or attenuated, and it is contactless recording that can be performed comfortably even for longer than an hour. It has excellent and decent temporal resolution, especially when it is combined with the patient's own brain magnetic resonance imaging (magnetic source imaging). Data of MEG and electroencephalography are not mutually exclusive and it is recorded simultaneously and interpreted together. MEG has been shown to be useful in detecting the irritative zone in both lesional and nonlesional epilepsy surgery. It has provided valuable and additive information regarding the lesion that should be resected in epilepsy surgery. Better outcomes in epilepsy surgery were related to the localization of the irritative zone with MEG. The value of MEG in epilepsy surgery is recruiting more patients to epilepsy surgery and providing critical information for surgical planning. MEG cortical mapping is helpful in younger pediatric patients, especially when the epileptogenic zone is close to the eloquent cortex. MEG is also used in both basic and clinical research of epilepsy other than surgery. MEG is a valuable diagnostic modality for diagnosis and treatment, as well as research in epilepsy.

키워드

참고문헌

  1. Jaklevic RC, Lambe J, Silver AH, Mercereau JE. Quantum interference effects in Josephson tunneling. Phys Rev Lett 1964:12:159-60.
  2. Baule G, Mcfee R. Detection of the magnetic field of the heart. Am Heart J 1963;66:95-6. https://doi.org/10.1016/0002-8703(63)90075-9
  3. Cohen D. Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science 1968;161:784-6. https://doi.org/10.1126/science.161.3843.784
  4. Hamalainen M. Anatomical correlates for magnetoencephalography: integration with magnetic resonance images. Clin Phys Physiol Meas 1991;12 Suppl A:29-32. https://doi.org/10.1088/0143-0815/12/A/006
  5. Sato S, Balish M, Muratore R. Principles of magnetoencephalography. J Clin Neurophysiol 1991;8:144-56. https://doi.org/10.1097/00004691-199104000-00003
  6. Ko DY, Kufta C, Scaffidi D, Sato S. Source localization determined by magnetoencephalography and electroencephalography in temporal lobe epilepsy: comparison with electrocorticography: technical case report. Neurosurgery 1998;42:414-21. https://doi.org/10.1097/00006123-199802000-00142
  7. Barth DS, Sutherling W, Engle J Jr, Beatty J. Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science 1984;223:293-6. https://doi.org/10.1126/science.6422552
  8. Tovar-Spinoza ZS, Ochi A, Rutka JT, Go C, Otsubo H. The role of magnetoencephalography in epilepsy surgery. Neurosurg Focus 2008;25:E16.
  9. Cohen D, Cuffin BN. Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 1983;56:38-51. https://doi.org/10.1016/0013-4694(83)90005-6
  10. Iwasaki M, Pestana E, Burgess RC, Luders HO, Shamoto H, Nakasato N. Detection of epileptiform activity by human interpreters: blinded comparison between electroencephalography and magnetoencephalography. Epilepsia 2005;46:59-68.
  11. Funke M, Constantino T, Van Orman C, Rodin E. Magnetoencephalography and magnetic source imaging in epilepsy. Clin EEG Neurosci 2009;40:271-80. https://doi.org/10.1177/155005940904000409
  12. Pataraia E, Simos PG, Castillo EM, Billingsley RL, Sarkari S, Wheless JW, et al. Does magnetoencephalography add to scalp video-EEG as a diagnostic tool in epilepsy surgery? Neurology 2004;62:943-8. https://doi.org/10.1212/01.WNL.0000115122.81621.FE
  13. Stefan H, Hummel C, Scheler G, Genow A, Druschky K, Tilz C, et al. Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain 2003;126(Pt 11):2396-405. https://doi.org/10.1093/brain/awg239
  14. Knowlton RC, Laxer KD, Aminoff MJ, Roberts TP, Wong ST, Rowley HA. Magnetoencephalography in partial epilepsy: clinical yield and localization accuracy. Ann Neurol 1997;42:622-31. https://doi.org/10.1002/ana.410420413
  15. Leijten FS, Huiskamp GJ, Hilgersom I, Van Huffelen AC. High-resolution source imaging in mesiotemporal lobe epilepsy: a comparison between MEG and simultaneous EEG. J Clin Neurophysiol 2003;20:227-38. https://doi.org/10.1097/00004691-200307000-00001
  16. Mikuni N, Nagamine T, Ikeda A, Terada K, Taki W, Kimura J, et al. Simultaneous recording of epileptiform discharges by MEG and subdural electrodes in temporal lobe epilepsy. Neuroimage 1997;5 (4 Pt 1):298-306. https://doi.org/10.1006/nimg.1997.0272
  17. Gharib S, Sutherling WW, Nakasato N, Barth DS, Baumgartner C, Alexopoulos N, et al. MEG and ECoG localization accuracy test. Electroencephalogr Clin Neurophysiol 1995;94:109-14. https://doi.org/10.1016/0013-4694(94)00276-Q
  18. Leahy RM, Mosher JC, Spencer ME, Huang MX, Lewine JD. A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalogr Clin Neurophysiol 1998;107:159-73. https://doi.org/10.1016/S0013-4694(98)00057-1
  19. Oishi M, Otsubo H, Kameyama S, Morota N, Masuda H, Kitayama M, et al. Epileptic spikes: magnetoencephalography versus simultaneous electrocorticography. Epilepsia 2002;43:1390-5. https://doi.org/10.1046/j.1528-1157.2002.10702.x
  20. Nakasato N, Levesque MF, Barth DS, Baumgartner C, Rogers RL, Sutherling WW. Comparisons of MEG, EEG, and ECoG source localization in neocortical partial epilepsy in humans. Electroencephalogr Clin Neurophysiol 1994;91:171-8. https://doi.org/10.1016/0013-4694(94)90067-1
  21. Agirre-Arrizubieta Z, Huiskamp GJ, Ferrier CH, van Huffelen AC, Leijten FS. Interictal magnetoencephalography and the irritative zone in the electrocorticogram. Brain 2009;132(Pt 11):3060-71. https://doi.org/10.1093/brain/awp137
  22. Otsubo H, Ochi A, Elliott I, Chuang SH, Rutka JT, Jay V, et al. MEG predicts epileptic zone in lesional extrahippocampal epilepsy: 12 pediatric surgery cases. Epilepsia 2001;42:1523-30.
  23. Knowlton RC, Elgavish RA, Limdi N, Bartolucci A, Ojha B, Blount J, et al. Functional imaging: I. Relative predictive value of intracranial electroencephalography. Ann Neurol 2008;64:25-34. https://doi.org/10.1002/ana.21389
  24. Fujiwara H, Greiner HM, Hemasilpin N, Lee KH, Holland-Bouley K, Arthur T, et al. Ictal MEG onset source localization compared to intracranial EEG and outcome: improved epilepsy presurgical evaluation in pediatrics. Epilepsy Res 2012;99:214-24. https://doi.org/10.1016/j.eplepsyres.2011.11.007
  25. Ramantani G, Boor R, Paetau R, Ille N, Feneberg R, Rupp A, et al. MEG versus EEG: influence of background activity on interictal spike detection. J Clin Neurophysiol 2006;23:498-508. https://doi.org/10.1097/01.wnp.0000240873.69759.cc
  26. Rodin E, Funke M, Berg P, Matsuo F. Magnetoencephalographic spikes not detected by conventional electroencephalography. Clin Neurophysiol 2004;115:2041-7. https://doi.org/10.1016/j.clinph.2004.04.002
  27. Bast T, Oezkan O, Rona S, Stippich C, Seitz A, Rupp A, et al. EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia 2004;45:621-31. https://doi.org/10.1111/j.0013-9580.2004.56503.x
  28. Widjaja E, Otsubo H, Raybaud C, Ochi A, Chan D, Rutka JT, et al. Characteristics of MEG and MRI between Taylor's focal cortical dysplasia (type II) and other cortical dysplasia: surgical outcome after complete resection of MEG spike source and MR lesion in pediatric cortical dysplasia. Epilepsy Res 2008;82:147-55. https://doi.org/10.1016/j.eplepsyres.2008.07.013
  29. Ishii R, Canuet L, Ochi A, Xiang J, Imai K, Chan D, et al. Spatially filtered magnetoencephalography compared with electrocorticography to identify intrinsically epileptogenic focal cortical dysplasia. Epilepsy Res 2008;81:228-32. https://doi.org/10.1016/j.eplepsyres.2008.06.006
  30. Xiao Z, Xiang J, Holowka S, Hunjan A, Sharma R, Otsubo H, et al. Volumetric localization of epileptic activities in tuberous sclerosis using synthetic aperture magnetometry. Pediatr Radiol 2006;36: 16-21.
  31. Kamimura T, Tohyama J, Oishi M, Akasaka N, Kanazawa O, Sasagawa M, et al. Magnetoencephalography in patients with tuberous sclerosis and localization-related epilepsy. Epilepsia 2006;47:991-7. https://doi.org/10.1111/j.1528-1167.2006.00511.x
  32. Burneo JG, Bebin M, Kuzniecky RI, Knowlton RC. Electroclinical and magnetoencephalographic studies in epilepsy patients with polymicrogyria. Epilepsy Res 2004;62:125-33. https://doi.org/10.1016/j.eplepsyres.2004.07.013
  33. Shiraishi H. Source localization in magnetoencephalography to identify epileptogenic foci. Brain Dev 2011;33:276-81. https://doi.org/10.1016/j.braindev.2010.10.019
  34. Kim H, Lim BC, Jeong W, Kim JS, Chae JH, Kim KJ, et al. Magnetoencephalography in pediatric lesional epilepsy surgery. J Korean Med Sci 2012;27:668-73. https://doi.org/10.3346/jkms.2012.27.6.668
  35. Jansen FE, Huiskamp G, van Huffelen AC, Bourez-Swart M, Boere E, Gebbink T, et al. Identification of the epileptogenic tuber in patients with tuberous sclerosis: a comparison of high-resolution EEG and MEG. Epilepsia 2006;47:108-14. https://doi.org/10.1111/j.1528-1167.2006.00373.x
  36. Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med 2011;365:919-26. https://doi.org/10.1056/NEJMra1004418
  37. Paulini A, Fischer M, Rampp S, Scheler G, Hopfengartner R, Kaltenhauser M, et al. Lobar localization information in epilepsy patients: MEG: a useful tool in routine presurgical diagnosis. Epilepsy Res 2007;76:124-30. https://doi.org/10.1016/j.eplepsyres.2007.07.006
  38. Minassian BA, Otsubo H, Weiss S, Elliott I, Rutka JT, Snead OC 3rd. Magnetoencephalographic localization in pediatric epilepsy surgery: comparison with invasive intracranial electroencephalography. Ann Neurol 1999;46:627-33. https://doi.org/10.1002/1531-8249(199910)46:4<627::AID-ANA11>3.0.CO;2-C
  39. Knowlton RC, Elgavish RA, Bartolucci A, Ojha B, Limdi N, Blount J, et al. Functional imaging: II. Prediction of epilepsy surgery outcome. Ann Neurol 2008;64:35-41. https://doi.org/10.1002/ana.21419
  40. RamachandranNair R, Otsubo H, Shroff MM, Ochi A, Weiss SK, Rutka JT, et al. MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings. Epilepsia 2007;48:149-57.
  41. Lau M, Yam D, Burneo JG. A systematic review on MEG and its use in the presurgical evaluation of localization-related epilepsy. Epilepsy Res 2008;79:97-104. https://doi.org/10.1016/j.eplepsyres.2008.01.004
  42. Moore KR, Funke ME, Constantino T, Katzman GL, Lewine JD. Magnetoencephalographically directed review of high-spatial-resolution surface-coil MR images improves lesion detection in patients with extratemporal epilepsy. Radiology 2002;225:880-7. https://doi.org/10.1148/radiol.2253011597
  43. Eliashiv DS, Elsas SM, Squires K, Fried I, Engel J Jr. Ictal magnetic source imaging as a localizing tool in partial epilepsy. Neurology 2002;59:1600-10. https://doi.org/10.1212/01.WNL.0000032493.83875.0B
  44. Mamelak AN, Lopez N, Akhtari M, Sutherling WW. Magnetoencephalography-directed surgery in patients with neocortical epilepsy. J Neurosurg 2002;97:865-73. https://doi.org/10.3171/jns.2002.97.4.0865
  45. Roberts TP, Disbrow EA, Roberts HC, Rowley HA. Quantification and reproducibility of tracking cortical extent of activation by use of functional MR imaging and magnetoencephalography. AJNR Am J Neuroradiol 2000;21:1377-87.
  46. Roberts TP, Ferrari P, Perry D, Rowley HA, Berger MS. Presurgical mapping with magnetic source imaging: comparisons with intraoperative findings. Brain Tumor Pathol 2000;17:57-64. https://doi.org/10.1007/BF02482736
  47. Gaetz W, Cheyne D, Rutka JT, Drake J, Benifla M, Strantzas S, et al. Presurgical localization of primary motor cortex in pediatric patients with brain lesions by the use of spatially filtered magnetoencephalography. Neurosurgery 2009;64(3 Suppl):ons 177-85.
  48. Pang EW, Gaetz W, Drake JM, Strantzas S, MacDonald MJ, Otsubo H, et al. Patient with postcentral gyrectomy demonstrates reliable localization of hand motor area using magnetoencephalography. Pediatr Neurosurg 2009;45:311-6. https://doi.org/10.1159/000235749
  49. Rezai AR, Hund M, Kronberg E, Zonenshayn M, Cappell J, Ribary U, et al. The interactive use of magnetoencephalography in stereotactic image-guided neurosurgery. Neurosurgery 1996;39:92-102. https://doi.org/10.1097/00006123-199607000-00018
  50. Holowka SA, Otsubo H, Iida K, Pang E, Sharma R, Hunjan A, et al. Three-dimensionally reconstructed magnetic source imaging and neuronavigation in pediatric epilepsy: technical note. Neurosurgery 2004;55:1226. https://doi.org/10.1227/01.NEU.0000140992.67186.08
  51. Van Poppel M, Wheless JW, Clarke DF, McGregor A, McManis MH, Perkins FF Jr, et al. Passive language mapping with magnetoencephalography in pediatric patients with epilepsy. J Neurosurg Pediatr 2012;10:96-102. https://doi.org/10.3171/2012.4.PEDS11301
  52. Bercovici E, Pang EW, Sharma R, Mohamed IS, Imai K, Fujimoto A, et al. Somatosensory-evoked fields on magnetoencephalography for epilepsy infants younger than 4 years with total intravenous anesthesia. Clin Neurophysiol 2008;119:1328-34. https://doi.org/10.1016/j.clinph.2008.02.018
  53. Kakisaka Y, Nakasato N, Haginoya K, Kanno A, Tsuchiya S. Sensorimotor seizures of pediatric onset with unusual posteriorly oriented rolandic spikes. Epilepsy Res 2009;84:153-8. https://doi.org/10.1016/j.eplepsyres.2009.01.012
  54. Kakisaka Y, Iwasaki M, Haginoya K, Kanno A, Tsuchiya S, Nakasato N. Somatotopic distribution of peri-rolandic spikes may predict prognosis in pediatric-onset epilepsy with sensorimotor seizures. Clin Neurophysiol 2011;122:869-73. https://doi.org/10.1016/j.clinph.2010.09.026
  55. Perkins FF Jr, Breier J, McManis MH, Castillo E, Wheless J, McGregor AL, et al. Benign rolandic epilepsy ---- perhaps not so benign: use of magnetic source imaging as a predictor of outcome. J Child Neurol 2008;23:389-93. https://doi.org/10.1177/0883073807309239
  56. Kakisaka Y, Alexopoulos AV, Gupta A, Wang ZI, Mosher JC, Iwasaki M, et al. Generalized 3-Hz spike-and-wave complexes emanating from focal epileptic activity in pediatric patients. Epilepsy Behav 2011;20:103-6. https://doi.org/10.1016/j.yebeh.2010.10.025
  57. Yagyu K, Takeuchi F, Shiraishi H, Nakane S, Sueda K, Asahina N, et al. The applications of time-frequency analyses to ictal magnetoencephalography in neocortical epilepsy. Epilepsy Res 2010;90:199-206. https://doi.org/10.1016/j.eplepsyres.2010.05.001
  58. Ramachandrannair R, Ochi A, Imai K, Benifla M, Akiyama T, Holowka S, et al. Epileptic spasms in older pediatric patients: MEG and ictal high-frequency oscillations suggest focal-onset seizures in a subset of epileptic spasms. Epilepsy Res 2008;78:216-24. https://doi.org/10.1016/j.eplepsyres.2007.12.007
  59. Nowak R, Santiuste M, Russi A. Toward a definition of MEG spike: parametric description of spikes recorded simultaneously by MEG and depth electrodes. Seizure 2009;18:652-5. https://doi.org/10.1016/j.seizure.2009.07.002

피인용 문헌

  1. Highights in the History of Epilepsy: The Last 200 Years vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/582039
  2. Intranasal Dexmedetomidine for Sedation During Magnetoencephalography : vol.36, pp.5, 2013, https://doi.org/10.1097/wnp.0000000000000602