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SEQUENTIAL INTERVAL ESTIMATION FOR THE

EXPONENTIAL HAZARD RATE WHEN THE LOSS

FUNCTION IS STRICTLY CONVEX

Yu Seon Jang

Abstract. Let X1, X2, · · · , Xn be independent and identically dis-
tributed random variables having common exponential density with
unknown mean µ. In the sequential confidence interval estimation
for the exponential hazard rate θ = 1/µ, when the loss function is
strictly convex, the following stopping rule is proposed with the half
length d of prescribed confidence interval In for the parameter θ;

τ = smallest integer n such that n ≥ z2α/2θ̂
2/d2 + 2,

where θ̂ = (n − 1)Xn
−1
/n is the minimum risk estimator for θ

and zα/2 is defined by P (|Z| ≤ α/2) = 1 − α (α ∈ (0, 1)) with
Z ∼ N(0, 1). For the confidence intervals In which is required to
satisfy P (θ ∈ In) ≥ 1 − α. These estimated intervals Iτ have the
asymptotic consistency of the sequential procedure;

lim
d→0

P (θ ∈ Iτ ) = 1− α,

where α ∈ (0, 1) is given.
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1. Introduction

The exponential distribution is often used to model the time between
independent events that happen at a constant average rate. In ap-
plication, the exponential distribution can be used to model lifetimes
of various practical situations including but not limited to lengths of
times between successive catastrophic events and lengths of time be-
tween emergency arrivals at a hospital, to cite a few [7,10].

Let X1, X2, · · · , Xn be independent and identically distributed (IID)
random variables having common exponential probability density func-
tion (PDF) with unknown mean µ which is given by

(1.1) fµ(x) =
1

µ
e−x/µ × I(0,∞)(x),

where IA(·) is the indicator function on the set A. The hazard function
h(t) of a random variable X at time t is defined by

(1.2) h(t) = lim
∆t→0

P {t ≤ X < t+ ∆t | X ≥ t}
∆t

.

In the exponential case, the hazard function is represented by the inverse
of the mean;

(1.3) h(t) =
fµ(t)∫∞

t
fµ(x)dx

=
1

µ
≡ θ, say.

Models with constant hazard functions are unique and are often useful
as baseline distributions to which other distributions are compared or
as simple models for failure modes resulting in random failures. The
exponential distribution can be characterized as the only distribution
with a constant hazard rate [7, 10].

Estimation for the parameter is one of the most common forms of sta-
tistical inference. One measures a physical quantity in order to estimate

its value [6]. The estimator θ̂ is to be close to θ, we shall interpret this
to mean that it will be close on the average. To make this requirement
precise, it is necessary to specify a measure of the average closeness of

an estimate to θ. The accuracy of an estimator θ̂ is measured by the
risk function

(1.4) R(θ, θ̂) = Eθ

{
L(θ, θ̂)

}
,



Sequential interval estimation 431

where L is some loss function, for example, L(θ, θ̂) = (θ − θ̂)2 + cn

for the cost c per unit. The best estimator is θ̂ which minimizes the
risk for all θ. But there exists no uniformly best estimator. Sometimes
the maximimu likelihood estimator (MLE) or the uniformly minimum
variance unbiased estimator (UMVUE) is used as the good estimator
of θ. When the loss function is strictly convex, the UMVUE for the
parameter θ is the minimum risk estimator (MRE) by the Rao-Blackwell
Theorem.

Takada [9] pointed out that fixed sample size procedure are not avail-
able for scale families. Thus, it is necessary to find a sequential sampling
rule. Juhlin [4] studied the sequential estimation for the exponential
mean parameter and Junvie [7] proposed the sequential confidence in-
terval estimation for the exponential hazard rate using the MLE.

In this paper, estimating sequential confidence intervals for the expo-
nential hazard rate θ = 1/µ, when the loss function is strictly convex, the
following stopping rule is proposed with the half length d of prescribed
confidence interval In for the parameter θ;

(1.5) τ = smallest integer n such that n ≥ z2
α/2θ̂

2/d2 + 2,

where θ̂ is the minimum risk estimator for the θ and zα/2 is defined by
P (|Z| ≤ α/2) = 1−α (α ∈ (0, 1)) with Z ∼ N(0, 1). For the confidence
intervals In which is required to satisfy P (θ ∈ In) ≥ 1 − α, These
estimated intervals Iτ have the asymptotic consistency of the sequential
procedure;

(1.6) lim
d→0

P (θ ∈ Iτ ) = 1− α,

where α ∈ (0, 1) is given.

2. Main Results

A sequence of random variables {Xn} has asymptotically normal with
mean µn and variance σ2

n, briefly Xn ∼ AN(µn, σ
2
n), if σ2

n > 0 for all n
sufficiently large and

(2.1)
Xn − µn
σn

D−→ Z ∼ N(0, 1),

where
D−→ stands for the convergence in distribution. The following

lemma comes from Serfling [8].
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Lemma 2.1. If Xn ∼ AN(µn, σ
2
n), then also anXn + bn ∼ AN(µn, σ

2
n)

if and only if

(2.2) an → 1,
µn(an − 1) + bn

σn
→ 0 as n→∞.

In particular, if µn = 0, σ2
n = 1, then |an| instead an → 1.

Theorem 2.2. Let X1, X2, · · · , Xn be IID exponential random vari-

ables with hazard rate θ and let Tn = (n − 1)X
−1

n /n. Then Tn is the
UMVUE for θ and Tn has AN(θ, θ2/(n− 2)).

Proof. First, we prove that Tn is the UMVUE for θ. Since the com-
plete sufficient statistic Xn is unbiased, Xn is the UMVUE. From
Lehmann-Sheffe’s Theorem it suffices to show that Tn is an unbiased esti-
mator of θ. Since S =

∑n
i=1Xi has the Erlang distribution, Erlang(n, θ),

thus we have

(2.3) Eθ(Tn) = (n− 1)

∫ ∞
0

1

sΓ(n)
θnsn−1e−θsds = θ

because θn−1sn−2e−θs/Γ(n−1) is the PDF of Erlang distribution, Erlang
(n − 1, θ). Next, we prove the asymptotic normality of Tn. Now, the
variance of Tn is

(2.4) V ar(Tn) = (n− 1)2

∫ ∞
0

1

s2Γ(n)
θnsn−1e−θsds− θ2 =

θ2

n− 2
.

Since X
−1

n is MLE of θ, it follows asymptotic normality. From the
Lemma 2.1 we obtain that

(2.5) Tn =
(n− 1)

n
X
−1

n ∼ AN

(
θ,

θ2

n− 2

)
.

This proof is complete.

From Rao-Blackwell’s Theorem we have the following corollary.

Corollary 2.3. When the loss function is strictly convex, the
UMVUE Tn for θ in Theorem 2.2 is the MRE.

For a good estimator θ̂, let In = [θ̂− d, θ̂+ d] be a confidence interval
for θ with confidence coefficient 1− α, where d > 0 and 0 < α < 1, that
is,

(2.6) P (θ ∈ In) = 1− α.
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Now, the coverage probability for θ with In : Tn ± d (d > 0) as the
confidence interval is given by P {θ ∈ In} ≥ 1− α.

Set

(2.7) n∗ =
z2
α/2

d2
θ2 + 2.

Since for sufficiently large n

(2.8) P

{
|Tn − θ|
θ/
√
n− 2

≤ zα/2

}
≈ 1− α,

we then have

(2.9) P {θ ∈ In} ≥ P

{
|Tn − θ| ≤

zα/2√
n− 2

θ

}
≈ 1− α.

Since θ is unknown, n∗ is also unknown. In sequential estimating the
confidence interval In, consider the following stopping rule:

(2.10) τ = smallest integer n such that n ≥
z2
α/2

d2
T 2
n + 2,

where Tn = (n− 1)X
−1
/n is the UMVUE of θ.

From the Chow-Robbins procedure [1], one has the following results.

Lemma 2.4. Let n∗ and τ be defined as in (2.7) and (2.10), respec-
tively. Then the following statements hold:

(1) P {τ <∞} = 1 for all d > 0,
(2) τ →∞ with probability 1 as d→ 0,

(3)
τ

n∗
→ 1 with probability 1 as d→ 0.

Lemma 2.5. Let τ be defined as in (2.10). Then

Tτ − θ
θ/
√
τ − 2

D−→ N(0, 1) as d→ 0.

Proof. For all µ > 0, by the Taylor expansion of h(x) = (n − 1)/nx
at x = µ, we have

(2.11) Tn =
n− 1

n
θ − n− 1

n
θ2(Xn − µ) +Rn,
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where Rn = (n − 1)(Xn − µ)2/2nξ2 and ξ is a random variable lying
between Xn and µ. This yields

(2.12)
Tn − θ

θ/
√
n− 2

= anZn + bn +R∗n,

where an = −(n− 1)
√
n− 2/n

√
n, bn = −

√
n− 2/n,

Zn =
√
n
(
Xn − µ

)
/µ, and

(2.13)
∣∣R∗(Xn, ξ)

∣∣ ≤ M
∣∣Xn − ξ

∣∣2
2

for some M < ∞. By the Central Limit Theorem, Zn
D−→ Z ∼ N(0, 1).

From Lemma 1.1 we know that

(2.14) anZn + bn
D−→ N(0, 1) as n→∞.

Now, τ → ∞ as d → 0. Since anZn + bn is uniform continuity in
probability and stochastically bounded from Woodroofe [12], thus we
have

(2.15) aτZτ + bτ
D−→ Z ∼ N(0, 1) as d→ 0,

From the Strong Law of Large Numbers
∣∣Xτ − θ

∣∣→ 0 with probability
1. As result, R∗τ → 0 in probability as d → 0. Consequently, from the
Slutsky’s Theorem the proof of this lemma is complete.

Theorem 2.6. When the loss function is strictly convex, let τ be
defined as in (2.10). Then

lim
d→0

P {θ ∈ Iτ} = 1− α.

Proof. From the definition of τ in (2.10), we have

d
√
τ − 2/θ ≥ zα/2

and

P {θ ∈ Iτ} = P

{
|Tτ − θ|
θ/
√
τ − 2

≤ d
√
τ − 2

θ

}
≥ 1− α.

Set

(2.16) Zτ =
Tτ − θ

θ/
√
τ − 2

.
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For any fixed ε > 0,

P

{
|Zτ | ≤

zα/2Tτ
θ

}
=P

{
|Zτ | ≤

zα/2Tτ
θ

,

∣∣∣∣Tτθ − 1

∣∣∣∣ ≤ ε

}
+ P

{
|Zτ | ≤

zα/2Tτ
θ

,

∣∣∣∣Tτθ − 1

∣∣∣∣ > ε

}
≤P

{
|Zτ | ≤

zα/2Tτ
θ

,

∣∣∣∣Tτθ − 1

∣∣∣∣ ≤ ε

}
+ P

{∣∣∣∣Tτθ − 1

∣∣∣∣ > ε

}
≤P

{
|Zτ | ≤ zα/2(1 + ε)

}
+ P

{∣∣∣∣Tτθ − 1

∣∣∣∣ > ε

}
.

By the Strong Law of Large Numbers, Tτ → θ with probability 1 as
d→ 0. Hence, Tτ/θ → 1 in probability as d→ 0 and

lim
ε→0

P

{∣∣∣∣Tτθ − 1

∣∣∣∣ > ε

}
= 0.

Now, by Lemma 1.2, Zτ
D−→ Z ∼ N(0, 1) as d→ 0. Thus, letting d→ 0

and taking ε→ 0 we have

lim sup
d→0

P

{
|Zτ | ≤

zα/2Tτ
θ

}
≤ 1− ε.

Similarly, we have

P

{
|Zτ | ≤

zα/2Tτ
θ

}
=P

{
|Zτ | ≤

zα/2Tτ
θ

,

∣∣∣∣Tτθ − 1

∣∣∣∣ ≤ ε

}
− P

{∣∣∣∣Tτθ − 1

∣∣∣∣ > ε

}
+ P

{
|Zτ | ≤

zα/2Tτ
θ

,

∣∣∣∣Tτθ − 1

∣∣∣∣ > ε

}
+ P

{∣∣∣∣Tτθ − 1

∣∣∣∣ > ε

}
≥P

{
|Zτ | ≤ zα/2(1− ε)

}
− P

{∣∣∣∣Tτθ − 1

∣∣∣∣ > ε

}
.
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Hence, taking ε→ 0 we get

lim inf
d→0

P

{
|Zτ | ≤

zα/2Tτ
θ

}
≥ 1− α

and thus we have

lim
d→0

P

{
|Zτ | ≤

zα/2Tτ
θ

}
≥ 1− α.

As a result, lim infd→0 P {θ ∈ Iτ} ≥ 1− α. Now, observe that

τ − 1 <
z2
α/2

d2
T 2
τ−1 + 2

d

θzα/2

√
τ <

√
T 2
n

θ2
+

d2

θ2z2
α/2

≡ kd, say

For any ε > 0,

P {θ ∈ Iτ} ≤P
{
|Zτ | ≤ zα/2kd, |kd − 1| ≤ ε

}
+ P

{
|Zτ | ≤ zα/2kd, |kd − 1| > ε

}
≤P

{
|Zτ | ≤ zα/2(1 + ε)

}
+ P {|kd − 1| > ε} .

By the Strong Law of Large Number kd → 1 with probability 1 as d→ 0.
Taking ε→ 0, it follows that

lim sup
d→0

P {θ ∈ Iτ} ≤ 1− α.

Therefore the proof is complete.

References

[1] Y. S. Chow and H. Robbins, On the asymptotic theory of fixed width sequential
confidence intervals for the mean, Ann. Math. Stat. 36 (1965), 457–462.

[2] M. Ghosh, N. Mukhopadhyay, and P. K. Sen, Sequential Estimation, Wiley,
1997.

[3] Y. Takada, Non-existence of fixed sample size procedures for sacle families, Se-
quential Anal. 5 (1986), 99–100.

[4] K. D. Juhlin, Sequential and non-sequential confidence intervals with guaranteed
coverage probability and beta-protection, PhD Dissertation, University of Illinois,
1985.

[5] S. M. Kay, Fundamentals of Statistical Signal Processing, Prentice Hall PTR,
1993.

[6] E. L. Lehmann and G. Cassella, The Theory of Point Estimation, 2nd edition,
Springer, 1998.



Sequential interval estimation 437

[7] J. M. Pailden and D. L. L. Polestico, Sequential Confidence Intervals for the
Exponential Hazard Rate, 10th National Convention on Statistics (NCS) Oct.
1-2, 2007.

[8] R. J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, 1980.
[9] Y. Takada, Non-existence of fixed sample size procedures for scale families, Se-

quential Anal. 5 (1986), 99-100.
[10] C. Uno, E. Isogai, and D. L. Lim, Sequential point estimation of a function of

the exponential scale parameter, Aust. J. Stat. 33 (2004), 281–291.
[11] R. A. Wijsman, Sequential Confidence Intervals with Beta-Protection in One-

Parameter Families, Lecture Notes-Monograph Series 8 (1985), 96–107.
[12] M. Woodroofe, Nonlinear renewal theory in sequential analysis, CBMS-NSF Re-

gional Conference Series in Applied Mathematics 39, 1982., SIAM.

Department of Applied Mathematics
Kangnam University
Yongin 446-702, Republic of Korea
E-mail : ysjang@kangnam.ac.kr


