DOI QR코드

DOI QR Code

ON COEFFICIENTS OF NILPOTENT POLYNOMIALS IN SKEW POLYNOMIAL RINGS

  • Nam, Sang Bok (Department of Early Child Education Kyungdong University) ;
  • Ryu, Sung Ju (Department of Mathematics Pusan National University) ;
  • Yun, Sang Jo (Department of Mathematics Pusan National University)
  • 투고 : 2013.10.18
  • 심사 : 2013.11.25
  • 발행 : 2013.12.30

초록

We observe the basic structure of the products of coefficients of nilpotent (left) polynomials in skew polynomial rings. This study consists of a process to extend a well-known result for semi-Armendariz rings. We introduce the concept of ${\alpha}$-skew n-semi-Armendariz ring, where ${\alpha}$ is a ring endomorphism. We prove that a ring R is ${\alpha}$-rigid if and only if the n by n upper triangular matrix ring over R is $\bar{\alpha}$-skew n-semi-Armendariz. This result are applicable to several known results.

키워드

참고문헌

  1. D.D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), 2265-2272. https://doi.org/10.1080/00927879808826274
  2. D.D. Anderson, V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), 2847-2852. https://doi.org/10.1080/00927879908826596
  3. E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  4. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168, (2002), 45-52. https://doi.org/10.1016/S0022-4049(01)00053-6
  5. C.Y. Hong, N.K. Kim, T.K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), 103-122. https://doi.org/10.1081/AGB-120016752
  6. C.Y. Hong, N.K. Kim, T.K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure and Appl. Algebra. 151 (2000), 215-226. https://doi.org/10.1016/S0022-4049(99)00020-1
  7. C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), 751-761. https://doi.org/10.1081/AGB-120013179
  8. Y.C. Jeon, Y. Lee, S.J. Ryu, A structure on coefficients of nilpotent polynomials, J. Korean Math. Soc. 47 (2010), 719-733. https://doi.org/10.4134/JKMS.2010.47.4.719
  9. N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488. https://doi.org/10.1006/jabr.1999.8017
  10. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), 289-300.
  11. J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1
  12. T.-K. Lee, T.-L. Wong, On Armendariz rings, Houston J. Math. 2 (2003), 583- 593.
  13. M.B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17. https://doi.org/10.3792/pjaa.73.14