References
- B. Balof and P. Keef, Invariants on primary abelian groups and a problem of Nunke, Note Mat. 29 (2) (2009), 83-114.
- P. Danchev, On extensions of primary almost totally projective groups, Math. Bohemica 133 (2) (2008), 149-155.
-
P. Danchev, On almost
${\omega}_1$ -$p^{{\omega}+n}$ projective abelian p-groups, accepted. -
P. Danchev, On
${\omega}_1$ -n-simply presented abelian p-groups, submitted. - P. Danchev and P. Keef, Generalized Wallace theorems, Math. Scand. 104 (1) (2009), 33-50. https://doi.org/10.7146/math.scand.a-15083
- P. Danchev and P. Keef, Nice elongations of primary abelian groups, Publ. Mat. 54 (2) (2010), 317-339. https://doi.org/10.5565/PUBLMAT_54210_02
-
P. Danchev and P. Keef, An application of set theory to
${\omega}$ +n -totally$p^{{\omega}+n}$ projective primary abelian groups, Mediterr. J. Math. (4) 8 (2011), 525-542. https://doi.org/10.1007/s00009-010-0088-2 - L. Fuchs, Infinite Abelian Groups, volumes I and II, Acad. Press, New York and London, 1970 and 1973.
- P. Griffith, Infinite Abelian Group Theory, The University of Chicago Press, Chicago-London, 1970.
- P. Hill, Almost coproducts of finite cyclic groups, Comment. Math. Univ. Carolin. 36 (4) (1995), 795-804.
- P. Hill and W. Ullery, Isotype separable subgroups of totally projective groups, Abelian Groups and Modules, Proc. Padova Conf., Padova 1994, Kluwer Acad. Publ. 343 (1995), 291-300.
- P. Hill and W. Ullery, Almost totally projective groups, Czechoslovak Math. J. 46 (2) (1996), 249-258.
-
P. Keef, On
${\omega}_1$ -$p^{{\omega}+n}$ -projective primary abelian groups, J. Algebra Numb. Th. Acad. 1 (1) (2010), 41-75. - P. Keef and P. Danchev, On n-simply presented primary abelian groups, Houston J. Math. 38 (4) (2012), 1027-1050.
- P. Keef and P. Danchev, On m, n-balanced projective and m, n-totally pojective primary abelian groups, J. Korean Math. Soc. 50 (2) (2013), 307-330. https://doi.org/10.4134/JKMS.2013.50.2.307