DOI QR코드

DOI QR Code

석유가스생산을 위한 수압파쇄기술 설계 이론과 실제

Theoretical Background and Design of Hydraulic Fracturing in Oil and Gas Production

  • 천대성 (한국지질자원연구원 지구환경연구본부) ;
  • 이태종 (한국지질자원연구원 지열자원연구팀)
  • 투고 : 2013.11.11
  • 심사 : 2013.12.20
  • 발행 : 2013.12.31

초록

본 보고에서는 석유산업에서 석유 및 가스의 생산성과 회수율을 극대화시키기 위한 방안의 하나인 수압파쇄기술에 대하여 다루고 있다. 수압파쇄기술은 인위적으로 저류층에 균열을 발생시켜 발생된 균열을 통해 저류층 유체의 유정 내 유입을 용이하게 하는 방법으로, 최근 셰일가스나 오일셰일과 같은 비전통석유가스 개발에서 널리 사용되고 있다. 수압파쇄는 크게 세 가지 단계의 과정을 통해 이루어지며, 효율적인 수압파쇄 설계를 위해 제안된 모델과 수압파쇄 후 결과를 분석, 평가하는 방법에 대해 소개하고 있다. 또한 수압파쇄과정에서 발생하는 다양한 문제점과 이를 해결하는 데 필요한 저류층 암반역학에 대해서도 간략하게 다루고 있다.

This paper deals with a hydraulic fracturing technique, which is one of the methods to maximize the recovery rate and productivity of oil and gas in the petroleum industry. In the hydraulic fracturing, typically water mixed with sand and chemicals is injected into a wellbore in order to create artificial fractures along which formation fluids migrate to the well. In recent years, it is widely used in non-conventional oil and gas such as oil shale and shale gas. Three main stages of the hydraulic fracturing process, the proposed design models for the effective hydraulic fracturing and diagnostics after fracturing treatment are introduced. In addition, this paper introduces reservoir geomechanics to solve various problems in the process of hydraulic fracturing.

키워드

참고문헌

  1. Jung, S., 2011, Post-fracturing evaluation of a hydraulicfractured well using well testing interpretation, Journal of the Korean society of for geosystem engineering 48.4, 493-498.
  2. Choe, J., 2011, offshore drilling engineering, CIR, Seoul, 368p.
  3. KIGAM, 2010, Technical report - Hydraulic fracturing.
  4. Cipolla, C.L. and Wright, C.A., 2000, State-of-the-Art in hydraulic fracture diagnostics, SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane, Australia, SPE 64434.
  5. Dusseault, M.B., 1998, Course note of shale gas fracturing.
  6. Economides, M. J. and Martin, T., 2007, Modern fracturing. Houston, Energy Tribune Publishing, 507p.
  7. Fjaer, E., Holt, R.M., Horsrud, P., Raaen, A.M. and Risnes, R., 2008, Petroleum related rock mechanics, 2nd edition, Elsevier, Amsterdam, 491p.
  8. Gaarenstroom, L., Tromp, R.A.J., de Jong, M.C. and Brandenburg, A.M., 1993, Overpressures in the Central North Sea: implication for trap integrity and drilling safety, Proc. of the 4th Conference, London, UK, 397-406.
  9. GMI, 2010, Short course of oilfield geomechanics.
  10. Geerstma, J. and de Klerk, F.A., 1969, Rapid method of predicting width and extent of hydraulically induced fractures, JPT, 1571-1581.
  11. Jahn, F., Cook, M. and Graham, M., 2008, Hydrocarbon exploration and production, 2nd edition, Elsevier, Amsterdam, 444p.
  12. Jeffrey, R.G., Zhang, X., and Bunger, A.P., 2010, Hydraulic fracturing of naturally fractured reservoirs, Proc. 35th workshop on Geothermal Reservoir Engineering, Stanford, USA, SGP-TR-188.
  13. Jones, J. and Britt, L.K., 2009, Design and appraisal of hydraulic fractures, Richardson, Society of Petroleum Engineers.
  14. Nolte, K.G. and Smith, M.B., 1981, Interpretation of fracturing pressures, SEP 8297.
  15. Perkins, T.K. and Kern, L.R., 1961, Widths of hydraulic fractures, JPT, 937-949.
  16. Zoback, M.D., Reservoir geomechanics, Cambridge, New york, 449p.

피인용 문헌

  1. 10.32390/ksmer.2018.55.4.340 vol.55, pp.4, 2018, https://doi.org/10.32390/ksmer.2018.55.3.185
  2. Hydromechanical dynamics of hydraulic and natural fractures vol.55, pp.4, 2018, https://doi.org/10.32390/ksmer.2018.55.4.340