참고문헌
- F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81, (1973), 637-654. https://doi.org/10.1086/260062
- R. C. Merton, Theory of rational option pricing, The Bell Journal of Economics and Management Science, 4, (1973), 141-183. https://doi.org/10.2307/3003143
- M. Broadie and J. B. Detemple, Option pricing: valuation models and applications, Management Sciences, 50, (2004), 1145-1177. https://doi.org/10.1287/mnsc.1040.0275
- H. Han and X. Wu, A Fast numerical method for the Black-Scholes equation of American options, SIAM Journal on Numerical Analysis, 41, (2003), 2081-2095. https://doi.org/10.1137/S0036142901390238
- G. Cortazar, Simulation and Numerical Methods in Real Options Valuation: Real Options and Investment Under Uncertainty, The MIT Press, Cambridge, 601-620, 2004.
- J. C. Cox, S. A Ross, and M. Rubinstein, Option pricing: a simplified approach, Journal of Financial and Economics, 7, (1979), 229-263. https://doi.org/10.1016/0304-405X(79)90015-1
- R. Geske and K. Shastri, Valuation by approximation: a comparison of alternative option valuation techniques, Journal of Financial and Quantitative Analysis, 20, (1985), 45-71. https://doi.org/10.2307/2330677
- K. Moon and H. Kim, A cost-effective modification of the trinomial method for option pricing, Journal of Korean Society for Industrial and Applied Mathematics, 15, (2011), 1-17.
- M. J. Brennan and E. S. Schwartz, Finite difference methods and jump processes arising in the pricing of contingent claims: asynthesis, Journal of Financial and Quantitative Analysis, 13, (1978), 461-474. https://doi.org/10.2307/2330152
- D. Tavella and C. Randall, Pricing Financial Instruments: The Finite Difference Method, JohnWilley & Sons, New York, 2000.
- M. M. Chawla and D. J. Evans, Numerical volatility in option valuation from Black-Scholes equation by finite differences, International Journal of Computer Mathematics, 81, (2004), 1039-1041. https://doi.org/10.1080/03057920412331272234
- P. Wilmott, J. Dewynne, and S. Howison, Option Pricing : Mathematical Models and Computation, Oxford Financia Press, Oxford, 1993.
- D. J. Duffy, Finite Difference Methods in Financial Engineering: a Partial Differential Equation Approach, John Wiley and Sons, New York, 2006.
- R. Seydel, Tools for Computational Finance, Springer, Berlin, 2012.
- J. Topper, Financial Engineering with Finite Elements, John Wiley and Sons, New York, 2005.
- B. A. Wade, A. Q. M. Khaliq, M. Yousuf, J. Vigo-Aguiar, and R. Deininger, On smoothing of the Crank- Nicolson scheme and higher order schemes for pricing barrier options, Journal of Computational and Applied Mathematics, 204, (2007), 144-158. https://doi.org/10.1016/j.cam.2006.04.034
-
A. Q. M. Khaliq, D. A. Voss, and K. Kazmi, Adaptive
$\theta$ -methods for pricing American options, Journal of Computational and Applied Mathematics, 222, (2008), 210-227. https://doi.org/10.1016/j.cam.2007.10.035 - D. Jeong, I. S. Wee, and J. Kim, An operator splitting method for pricing the ELS option, Journal of Korean Society for Industrial and Applied Mathematics, 14, (2010), 175-187.
- Y. Achdou and N. Tchou, Variational analysis for the Black and Scholes equation with stochastic volatility, Mathematical Models and Numerical Analysis, 36, (2002), 373-395. https://doi.org/10.1051/m2an:2002018
- A. Ern, S. Villeneuve, and A. Zanette, Adaptive finite element methods for local volatility European option pricing, International Journal of Theoretical and Applied Finance, 7, (2004), 659-684. https://doi.org/10.1142/S0219024904002669
- C. Zhang, Pricing American Options by Adaptive Finite Element Method, Mathematics Department University of Maryland, 2005.
- Z. Zhu and N. Stokes, A Finite Element Platform for Pricing Path-dependent Exotic Options, CSIRO Mathematical & Information Sciences, Australia, 1998.
- J. Topper, Option Pricing with Finite Elements, Wilmott Magazine, 84-90, 2005.
- R. Zvan, P. A. Forsyth, and K. R. Vetzal, A General Finite Element Approach for PDE Option Pricing Models, University of Waterloo, Canada, 1998.
- P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method, SIAM Journal on Scientific Computing, 23, (2002), 2095-2122. https://doi.org/10.1137/S1064827500382324
- R. Zvan, P. A. Forsyth, and K. R. Vetzal, Penalty methods for American options with stochastic volatility, Journal of Computational and Applied Mathematics, 91, (1998), 199-218. https://doi.org/10.1016/S0377-0427(98)00037-5
- Z. Zhou and H. Wu, Finite element multigrid method for the boundary value problem of fractional advection dispersion equation, Journal of Applied Mathematics, 2013, (2013), 1-8.
- W. Hackbusch, Multi-grid Methods and Applications, Springer-Verlag, New York, 1985.
- P. Wesseling, An Introduction to Multigrid Methods, John Wiley and Sons, Chichester, 1995.
- U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid, Academic press, London, 2000.
- D. Jeong, J. Kim, and I. S. Wee, An accurate and efficient numerical method for Black-Scholes equations, Communications of the Korean Mathematical Society, 24, (2009), 617-628. https://doi.org/10.4134/CKMS.2009.24.4.617
- R. Zvan, K. R. Vetzal, and P. A. Forsyth, PDE methods for pricing barrier options, Journal of Economic Dynamics & Control, 24, (2000), 1563-1590. https://doi.org/10.1016/S0165-1889(00)00002-6
- Y. Achdou and O. Pironneau, Computational Methods for Option Pricing, SIAM, Philadelphia, 2005.
- O. Pironneau and F. Hecht, Mesh adaption for the Black and Scholes equations, East-West Journal of Numerical Mathematics, bf 8, (2000), 25-36.
- J. Persson and L. von Persson, Pricing European multi-asset options using a space-time adaptive FD-method, Computing and Visualization in Science, 10, (2007), 173-183. https://doi.org/10.1007/s00791-007-0072-y
- H. Ji, F. S. Lien, and E. Yee, Parallel adaptive mesh refinement combined with additive multigrid for the efficient solution of the poisson equation, ISRN Applied Mathematics, 2012, (2012), 1-24.
- A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations, Journal of Computational Physics, 142, (1998), 1-46. https://doi.org/10.1006/jcph.1998.5890
- C. J. Garcia-Cervera and A. M. Roma, Adaptive mesh refinement for micromagnetics simulations, IEEE Transactions on Magnetics, 42, (2006), 1648-1654. https://doi.org/10.1109/TMAG.2006.872199
- S. Wise, J. Kim, and J. Lowengrub, Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method, Journal of Computational Physics, 226, (2007), 414-446. https://doi.org/10.1016/j.jcp.2007.04.020
- M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Journal of Computational Physics, 82, (1989), 64-84. https://doi.org/10.1016/0021-9991(89)90035-1
- M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, Journal of Computational Physics, 53, (1984), 484-512. https://doi.org/10.1016/0021-9991(84)90073-1
- Applied numerical algorithms group. The chombo framework for block-structured adaptive mesh refinement, Technical report, Lawrence Berkeley National Laboratory, 2005 (Available online at http://seesar.lbl.gov/ANAG/chombo).
- A. Brandt, Multi-level adaptive solutions to boundary-value problems, Mathematics of Computation, 31, (1977), 333-390. https://doi.org/10.1090/S0025-5718-1977-0431719-X
- R. Kangro and R. Nicolaides, Far field boundary conditions for Black-Scholes equations, SIAM Journal on Numerical Analysis, 38 (2000), 1357-1368. https://doi.org/10.1137/S0036142999355921
- C. A. Rendleman, V. E. Beckner, M. Lijewski, W. Crutchfield, and J. B. Bell, Parallelization of structured, hierarchical adaptive mesh refinement algorithms, Computing and Visualization in Science, 3, (2000), 147-157. https://doi.org/10.1007/PL00013544
- M. Berger and I. Rigoutsos, An algorithm for point clustering and grid generation, Systems, Man and Cybernetics, IEEE Transactions on, 21, (1991), 1278-1286. https://doi.org/10.1109/21.120081
- D. Bai and A. Brandt, Local mesh refinement multilevel techniques, SIAM Journal on Scientific and Statistical Computing, 8, (1987), 109-134. https://doi.org/10.1137/0908025
- G. W. Buetow and J. S. Sochacki, The trade-offs between alternative finite difference techniques used to price derivative securities, Applied Mathematics and Computation, 115, (2000), 177-190. https://doi.org/10.1016/S0096-3003(99)00141-1
- S. Figlewski and B. Gao, The adaptive mesh model: a new approach to efficient option pricing, Journal of Financial Economics, 53, (1999), 313-351. https://doi.org/10.1016/S0304-405X(99)00024-0
- D. Jeong, Mathematical model and numerical simulation in computational finance, Ph.D. Thesis, Department of Mathematics, Korea University, Korea, December, 2012.
피인용 문헌
- FAST ANDROID IMPLIMENTATION OF MONTE CARLO SIMULATION FOR PRICING EQUITY-LINKED SECURITIES vol.24, pp.1, 2013, https://doi.org/10.12941/jksiam.2020.24.079