DOI QR코드

DOI QR Code

Evaluation of Half Cell Potential Measurement in Cracked Concrete Exposed to Salt Spraying Test

염해에 노출된 균열부 콘크리트의 반전위 평가

  • 김기범 (에스이네스트 기술연구소) ;
  • 박기태 (한국건설기술연구원) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2013.06.25
  • Accepted : 2013.08.30
  • Published : 2013.12.31

Abstract

Several techniques for steel corrosion detection are proposed and HCP (half cell potential) technique is widely adopted for field investigation. If concrete has cracks on surface, steel corrosion is rapidly accelerated due to additional intrusion of chloride and carbon dioxide ions. This study is for an evaluation of HCP in cracked concrete exposed chloride attack. For this work, RC (reinforced concrete) beams are prepared considering 3 w/c ratios (0.35, 0.55, and 0.70) and several cover depths (10~60 mm) and various crack widths of 0.0~1.0 mm are induced. For 35 days, SST (salt spraying test) is performed for corrosion acceleration, and HCP and corrosion length of rebar are evaluated. With increasing crack width, w/c ratios, and decreasing cover depth, HCP measurements increase. HCP evaluation technique is proposed considering the effects of w/c ratios, crack width, and cover depth. Furthermore anti-corrosive cover depths are obtained through Life365 program and the results are compared with those from this study. The results shows relatively big difference in cracked concrete, however provide similar anti-corrosive conditions in sound concrete.

철근부식을 현장에서 평가하기 위해 다양한 부식측정방법이 있으나, 반전위(HCP: half cell potential)방법이 많이 사용되고 있다. 균열이 발생한 RC 구조물은 균열폭으로 유입되는 염화물, 이산화탄소 등에 의해 부식이 가속화 된다. 이 연구는 염해에 노출된 균열을 가진 RC 보의 HCP을 측정하여 부식정도를 평가하는데 목적이 있다. 이를 위해 세가지 물-시멘트비(w/c 0.35, 0.55, 0.70)와 다양한 피복두께(10~60 mm)를 가진 RC 보를 제조하였으며 하중을 가하여 균열폭을 0.0~1.5 mm로 유도하였다. 35일간 촉진염해분무시험을 통하여 부식을 촉진하였으며 이후 HCP과 부식길이를 평가하였다. 균열이 클수록, w/c가 높을수록, 피복두께가 작을수록 HCP은 증가하였으며, 각각의 영향인자를 정량화하여 균열을 가진 RC 보의 HCP 평가식을 도출하였다. 또한 Life365 프로그램을 이용하여 부식방지 피복두께를 도출하고 HCP평가식을 통한 부식방지 피복두께와 비교하였다. 균열부 콘크리트에서는 차이가 발생하였으나, w/c 0.6이하의 건전부 콘크리트에서는 두가지 방법에서 모두 근접한 부식저항 조건을 도출하였다.

Keywords

References

  1. Broomfield, J. P., Corrosion of Steel in Concrete: Understanding, Investigation and Repair, London: E&FN, 1997, pp. 1-15.
  2. Song, H. W., Kim, H. J., Kwon, S. J., Lee, C. H., Byun, K. J., and Park, C. K., "Prediction of Service Life in Cracked Reinforced Concrete Structures Subjected to Chloride Attack and Carbonation," 6th International Congress on Global Construction: Ultimate Concrete Opportunities, Dundee, Scotland, Cement Combinations for Durable Concrete, 2005, pp. 767-776.
  3. Park, S. S., Kwon, S. J., and Song, H. W., "Analysis Technique for Restrained Shrinkage of Concrete Containing Chlorides," Materials and Structures, Vol. 44, No. 2, 2011, pp. 475-486. (doi: http://dx.doi.org/10.1617/s11527-010-9642-4)
  4. Song, H. W., Kwon, S. J., Byun, K. J., and Park, C. K., "Predicting Carbonation in Early-Aged Cracked Concrete," Cement and Concrete Research, Vol. 36, No. 5, 2006, pp. 979-989. https://doi.org/10.1016/j.cemconres.2005.12.019
  5. Kwon, S. J. and Na, U. J., "Prediction of Durability for RC Columns with Crack and Joint under Carbonation Based on Probabilistic Approach," International Journal of Concrete Structures and Materials, Vol. 5, No. 1, 2011, pp. 11-18. (doi: http://dx.doi.org/10.4334/IJCSM.2011. 5.1.011).
  6. Kwon, S. J., Na, U. J., Park, S. S., and Jung, S. H., "Service Life Prediction of Concrete Wharves with Early- Aged Crack: Probabilistic Approach for Chloride Diffusion," Structural Safety, Vol. 31, No. 1, 2009, pp. 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  7. Park, S. S., Kwon, S. J., and Jung, S. H, "Analysis Technique for Chloride Penetration in Cracked Concrete Using Equivalent Diffusion and Permeation," Construction and Building Materials, Vol. 29, No. 2, 2012, pp. 183-192. https://doi.org/10.1016/j.conbuildmat.2011.09.019
  8. Park, S. S., Kwon, S. J., Jung, S. H., and Lee, S. W., "Modeling of Water Permeability in Early Aged Concrete with Cracks Based on Micro Pore Structure," Construction and Building Materials, Vol. 27, No. 1, 2012, pp. 597-604. https://doi.org/10.1016/j.conbuildmat.2011.07.002
  9. Aldea, C. M., Ghandehari, M., Shah, S. P., and Karr, A., "Estimation of Water Flow Through Cracked Concrete Under Load," ACI Materials Journal, Vol. 97, No. 5, 2000, pp. 567-575.
  10. Alonso, C., Andrade, C., and Gonzalez, J. A., "Relation between Resistivity and Corrosion Rate of Reinforcements in Carbonated Mortar Made with Several Cement Types," Cement and Concrete Research, Vol. 18, No. 5, 1988, pp. 687-698. https://doi.org/10.1016/0008-8846(88)90091-9
  11. Lim, Y. C., "A Study on the Estimation of Moisture Condition of Concrete by Resistivity Method," Journal of Korea Architecture Institute, Vol. 28, No. 12, 2012, pp. 69-76 (in Korean).
  12. So, H. S., "Environmental Influences and Assessment of Corrosion Rate of Reinforcing Bars Using the Linear Polarization Resistance Technique," Journal of Korea Architecture Institute, Vol. 22, No. 2, 2006, pp. 107-114 (in Korean).
  13. Liu, T. and Weyers, R. W., "Modeling the Dynamic Corrosion Process in Chloride Contaminated Concrete Structures," Cement and Concrete Research, Vol. 28, No. 3, 1998, pp. 365-379. https://doi.org/10.1016/S0008-8846(98)00259-2
  14. Elsener, B., "Corrosion Rate of Steel in Concrete-Measurements beyond the Tafel Law," Corrosion Science, Vol. 47, No. 12, 2005, pp. 3019-3033. https://doi.org/10.1016/j.corsci.2005.06.021
  15. Baek, S. H., Xue, William, Feng, M. Q., and Kwon, S. J., "Nondestructive Corrosion Detection in RC through Integrated Heat Induction and IR Thermography," Journal of Non Destructive Evaluation, Vol. 31, No. 2, 2012, pp. 181-190. (doi: http://dx.doi.org/10.1007/s10921-012-0133-0)
  16. Kwon, S. J. and Park, S. S., "Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography," Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 16, No. 2, 2012, pp. 40-48 (in Korean). https://doi.org/10.11112/jksmi.2012.16.2.040
  17. Maierhofer, C. H., Arndt, R., Rllig, M., Rieck, C., Walther, A., Scheel, H., and Hillemeier, B., "Application of Impulse-Thermography for Nondestructive Assessment of Concrete Structures," Cement and Concrete Composites, Vol. 28, No. 4, 2006, pp. 393-401. https://doi.org/10.1016/j.cemconcomp.2006.02.011
  18. Song, H. W., Lee, C. H., and Lee, K. C., "A Study on Corrosion Potential of Cracked Concrete Beam according to Corrosion Resistance Assessment," Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 97, No. 1, 2009, pp. 97-105 (in Korean).
  19. Elsener, B., Andrade, C., Gulikers, J., Polder, R., and Raupach, M., "Hall-Cell Potential Measurements-Potential Mapping on Reinforced Concrete Structures," Materials and Structures, Vol. 36, No. 7, 2003, pp. 461-471. (doi: http://dx.doi.org/10.1007/BF02481526)
  20. ASTM C876-09, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete, 2009, pp. 1-6.
  21. Kim, K. B., A Study on Allowable Crack Width of Reinforced Concrete Flexural Beam Subjected to Corrosive Environment, Yonsei University, Dissertation of MS, 2001, pp. 35 (in Korean).
  22. Lee, H. S. and Kwon, S. J., "An Experimental Study on Carbonation Velocity in Cracked Concrete," Journal of Chungwoon University Construction and Environmental Research Institute, Vol. 7, No. 1, pp. 1-11.
  23. Leelalerkiet, V., Kyung J. W., Ohtsu, M., Yokota, M., and Yokota., M., "Analysis of Half-Cell Potential Measurement for Corrosion of Reinforced Concrete," Construction and Building Materials, Vol. 18, No. 3, pp. 155-162.
  24. Thomas, M. D. A. and Bentz, E. C., Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides, Life365 Manual, SFA, 2002, pp. 12-56.
  25. Korea Concrete Institute, Concrete Standard Specification- Durability Part, 2004, pp. 25-86 (in Korean).