DOI QR코드

DOI QR Code

Cyclic Loading Test for Shear Strength of Low-rise RC Walls with Grade 550 MPa Bars

550 MPa 급 철근을 적용한 낮은 철근콘크리트 벽체의 전단강도를 위한 반복하중 실험

  • Park, Hong-Gun (Dept. of Architecture and Architectural Engineering, Seoul National University) ;
  • Lee, Jae-Hoon (Dept. of Civil Engineering, Yeungnam University) ;
  • Shin, Hyun-Mock (Dept. of Civil and Environmental Engineering, Sungkyunkwan University) ;
  • Baek, Jang-Woon (Dept. of Architecture and Architectural Engineering, Seoul National University)
  • 박홍근 (서울대학교 건축학과) ;
  • 이재훈 (영남대학교 건설시스템공학과) ;
  • 신현목 (성균관대학교 사회환경시스템공학과) ;
  • 백장운 (서울대학교 건축학과)
  • Received : 2013.05.31
  • Accepted : 2013.10.08
  • Published : 2013.12.31

Abstract

In the construction of nuclear power plants using massive walls, the use of high-strength re-bars for shear design is necessary to enhance the constructability and economy. In this study, low-rise walls (aspect ratio of 1.0) with grade 550 MPa bars were tested under cyclic loading to investigate the shear capacity and deformation capacity. The test parameters were the grade of horizontal re-bars (550 MPa, 420 MPa), strength of concrete compressive strength (46 MPa, 70 MPa), horizontal/vertical reinforcement ratio, use of lateral confinement hoops, shape of cross section, and failure modes (shear failure before or after flexural yielding). The test results were compared with those of walls with grade 420 MPa bars and predicted strength by current design codes. The results showed that the shear strength of the walls with 550 MPa bars was comparable to that of the walls with 420 MPa bars though the safe margin slightly decreased. ACI 349 provides underestimated shear strength for the walls with 550 MPa bars. In case of the wall with flexural yielding, a large deformation capacity was achieved. This result indicates that the ACI 349 provisions can be safely applied to seismic design of the low-rise walls (aspect ratio of 1.0) with grade 550 MPa bars.

거대한 벽체를 사용하는 원전구조물의 건설에서, 시공성과 경제성향상을 위해 벽체의 전단철근으로 사용되는 고강도 철근의 사용이 필요하다. 이 연구에서는, 550 MPa 급 철근을 사용한 낮은 벽체(형상비 1.0)의 전단내력과 변형능력을 검증하기 위해 벽체의 반복하중재하 실험이 수행되었다. 실험 변수는 수평철근의 항복강도(550 MPa 급, 420 MPa 급), 콘크리트 압축강도(46 MPa, 70 MPa), 수평/수직전단철근비, 횡구속후프의 여부, 벽체의 단면형상, 파괴모드(휨항복 전 또는 후 전단파괴)였다. 실험결과를 420 MPa 급 철근을 사용한 벽체, 그리고 현행설계기준에 의한 예측강도와 비교하였다. 실험 결과로부터 550 MPa 급 철근을 사용한 벽체의 전단강도가 420 MPa 급 철근을 사용한 벽체의 전단강도에 비해 안전여유가 조금 감소하였으나 비슷함을 보였다. ACI 349 전단강도식은 550 MPa 급 철근을 사용한 벽체를 과소평가하였으며, 휨 항복의 실험체의 경우 큰 변형능력을 보였다. 이 결과는 ACI 349 규정이 550 MPa 급 철근을 사용한 낮은 벽체(형상비 1.0)의 내진설계에 안전하게 적용될 수 있음을 가리킨다.

Keywords

References

  1. ACI 318 Committee, Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, Farmington Hills, 2011, 170 pp.
  2. ACI 349 Committee, Code Requirements for Nuclear Safety-Related Concrete Structures (ACI 349 M-06) and Commentary, American Concrete Institute, Farmington Hills, 2006, 44 pp.
  3. Barda, F., Hanson, J. M., and Corley, W. G., "Shear Strength of Low-Rise Walls with Boundary Elements," ACI Journal, Vol. 53, January 1977, pp. 149-202.
  4. Lefas, I. D., Kotsovos, M. D., and Ambraseys, N. N., "Behavior of Reinforced Concrete Structural Walls: Strength, Deformation Characteristics, and Failure Mechanism," ACI Structural Journal, Vol. 87, No. 1, 1990, pp. 23-31.
  5. Gupta, A. and Rangan, B. V., "High-Strength Concrete (HSC) Structural Walls," ACI Structural Journal, Vol. 95, No. 2, 1998, pp. 194-204.
  6. Oesterle, R. G., Fiorato, A. E., Aristizabal-Ochoa, J. D., and Corley, W. G., "Hysteretic Response of Reinforced Concrete Structural Walls," ACI Structural Journal, Vol. 63, August 1980, pp. 243-274.
  7. Cardenas, A. E., Hanson, J. M., Corley, W. G., and Hognestad, E., "Design Provisions for Shear Walls," ACI Journal, Proceedings, Vol. 70, No. 3, 1973, pp. 221-230.
  8. Kabeyasawa, T. and Hiraishi, H., "Test and Analyses of High-Strength Reinforced Concrete Shear Walls in Japan," ACI Journal, Vol. 176, October 1998, pp. 281-310.
  9. Hawkins, N. M., and Ghosh, S. K., "Acceptance Criteria for Special Precast Concrete Structural Walls Based on Validation Testing," PCI Journal, Vol. 49, No. 5, 2004, pp.78-92.
  10. Park, R., "Ductility Evaluation for Laboratory and Analytical Testing," Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo, Japan, Vol. 8, 1988, pp. 605-616.
  11. Lee, H. M., Sung, D. J., Kim, T. H., and Shin, H. M., "Analytical Study on the Inelastic Behavior of Reinforced High-Strength Concrete Bridge Columns," Journal of the Earthquake Engineering Society of Korea, Vol. 10, No. 2, 2006, pp. 11-19.
  12. Okamura, H., Maekawa, K., and Sivasubramaniyam, S., "Verification of Modeling for Reinforced Concrete Finite Element," Proceedings of Japan-US Seminar on Finite Element Analysis of Reinforced Concrete Structures, Tokyo, 1985, ASCE, pp. 528-543.
  13. Maekawa, K. and Okamura, H., "The Deformational Behavior and Constitutive Equation of Concrete Using the Elasto- Plastic and Fracture Model," Journal of the Faculty of Engineering, University of Tokyo, Series B 37.2 1983, pp. 253-328.
  14. British Standards Institution, Eurocode 8: Design of concrete structures EN1992-1-1: 2004, Brussels: CENEuropean Committee for Standardization, 2004, pp. 114-117.
  15. Gulec, C. K. and Whittaker, A. S., "Empirical Equations for Peak Shear Strength of Low Aspect Ratio Reinforced Concrete Walls," ACI Structural Journal, Vol. 108, No. 1, 2011, pp. 80-89.

Cited by

  1. Nonlinear Finite Element Analysis of the Reinforced Concrete Panel using High-Strength Reinforcing Bar vol.27, pp.5, 2015, https://doi.org/10.4334/JKCI.2015.27.5.481