DOI QR코드

DOI QR Code

An Overview Of Nanonet Based Dye-Sensitized Solar Cell (DSSC) In Solar Cloth

  • Othman, Mohd Azlishah (Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka) ;
  • Ahmad, Badrul Hisham (Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka) ;
  • Amat, Noor Faridah (Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka)
  • 투고 : 2013.05.14
  • 심사 : 2013.09.09
  • 발행 : 2013.12.31

초록

This technical paper contains the information of the Dye-Sensitized Solar Cells (DSSC) working principal where diffusion mechanism acts as electron transport to absorb the sunlight energy to generate the electrical energy. DSSC is photo electrochemical cell that implements the application of photosynthesis process. The performance of electron transport in DSSC has been reviewed in order to enhance the performance and efficiency of electron transport. The improvement of the electron transport also discussed in this paper.

키워드

참고문헌

  1. A. Jena, S. P. Mohanty, P. Kumar, J. Naduvath, P. Lekha, J. Das, H. K. Narula, S. Mallick, P. Bhargava, and V. Gondane, "Dye Sensitized Solar Cells : A Review," no. January 2013, pp. 37-41.
  2. M. M. Byranvand, A. N. Kharat, and A. R. Badiei, "Electron Transfer in Dye-Sensitized Nanocrystalline TiO 2 Solar Cell," vol. 2, pp. 19-26, 2012.
  3. Y. Jiao, F. Zhang, and S. Meng, "Fabricated Dye Sensitized Solar Cells ( DSSCs )," pp. 5-37, 1991.
  4. A. S. Karmakar and J. P. Ruparelia, "A Critical Review on Dye Sensitized Solar Cells," pp. 8-10, 2011.
  5. N.-G. Park, "Dye-Sensitized Metal Oxide Nanostructures and Their Photoelectrochemical Properties," Journal of the Korean Electrochemical Society, vol. 13, no. 1, pp. 10-18, Feb. 2010. https://doi.org/10.5229/JKES.2010.13.1.010
  6. Q. Zhang and G. Cao, "Nanostructured photoelectrodes for dye-sensitized solar cells," 2011.
  7. Y. Chergui, N. Nehaoua, and D. E. Mekki, "Comparative Study of Dye-Sensitized Solar Cell Based on ZnO and TiO 2 Nanostructures," 2010.
  8. R. Jose, V. Thavasi, and S. Ramakrishna, "Metal Oxides for Dye-Sensitized Solar Cells," Journal of the American Ceramic Society, vol. 92, no. 2, pp. 289-301, Feb. 2009. https://doi.org/10.1111/j.1551-2916.2008.02870.x
  9. M. Gratzel and J. R. Durrant, "DYE-SENSITISED MESOSCOPIC SOLAR CELLS," 1912.
  10. J.-J. Wu, G.-R. Chen, C.-C. Lu, W.-T. Wu, and J.-S. Chen, "Performance and electron transport properties of TiO(2) nanocomposite dye-sensitized solar cells.," Nanotechnology, vol. 19, no. 10, p. 105702, Mar. 2008. https://doi.org/10.1088/0957-4484/19/10/105702
  11. K. E. Jasim, "Dye Sensitized Solar Cells - Working Principles , Challenges and Opportunities," 2007.
  12. N.-G. Park, "Methods to Improve Light Harvesting Efficiency in Dye-Sensitized Solar Cells," Journal of Electrochemical Science and Technology, vol. 1, no. 2, pp. 69-74, Dec. 2010. https://doi.org/10.5229/JECST.2010.1.2.069
  13. K. Hara, H. Arakawa, and C. Dssc, Dye-sensitized Solar Cells. 2003.
  14. P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith, and L. M. Herz, "Electron Mobility and Injection SnO 2 , and TiO 2 Films Used in Dye- Sensitized Solar Cells," no. 6, pp. 5158-5166, 2011.
  15. K. Nazeeruddin, E. Baranoff, and M. Gra, "Dyesensitized solar cells : A brief overview," vol. 85, pp. 1172-1178, 2011. https://doi.org/10.1016/j.solener.2011.01.018
  16. A. Bally, "ELECTRONIC PROPERTIES OF NANO-CRYSTALLINE TITANIUM DIOXIDE THIN FILMS," vol. 2094, 1999.
  17. J. Halme, "Dye-sensitized nanostructured and organic photovoltaic cells : technical review and preliminary tests," 2002.
  18. M. M. Cogliati and M. Porro, "Third Generation Solar Cells : Modeling and Simulation," 2010.
  19. W. A. V. L, C. A. Q. S, and J. A. H. S, "The Chemistry and Physics of Dye-Sensitized Solar Cells," 1991.
  20. I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, "All-solid-state dye-sensitized solar cells with high efficiency.," Nature, vol. 485, no. 7399, pp. 486-9, May 2012. https://doi.org/10.1038/nature11067
  21. L. Deng, "DYE-SENSITIZED SOLAR CELLS WITH A SOLID HOLE CONDUCTOR," 2012.
  22. M. P. F. Graça, C. C. Silva, L. C. Costa, and M. A. Valente, "Study of the structural , morphological and electric characteristics of TiO 2 nanopowders .," vol. 3, pp. 99-111, 2010.
  23. B. E. Hardin, H. J. Snaith, and M. D. McGehee, "The renaissance of dye-sensitized solar cells," Nature Photonics, vol. 6, no. 3, pp. 162-169, Feb. 2012. https://doi.org/10.1038/nphoton.2012.22
  24. M. Kim and Y. Kwon, "Semiconductor CdO as a Blocking Layer Material on DSSC Electrode : Mechanism and Application," pp. 17176-17182, 2009.
  25. B. Tian, T. J. Kempa, and C. M. Lieber, "Single nanowire photovoltaics.," Chemical Society Reviews, vol. 38, no. 1, pp. 16-24, 2009. https://doi.org/10.1039/b718703n
  26. M. S. Dresselhaus, Y. M. Lin, O. Rabin, M. R. Black, and G. Dresselhaus, "Nanowires," 2003.
  27. A. I. Hochbaum and P. Yang, "Semiconductor Nanowires for Energy Conversion," pp. 527-546, 2010.
  28. C. M. Lieber, "Semiconductor nanowires : A platform for nanoscience and nanotechnology," vol. 36, no. December, pp. 1052-1064, 2011. https://doi.org/10.1557/mrs.2011.269
  29. W. Lu and C. M. Lieber, "Semiconductor nanowires," vol. 39, 2006.
  30. B. Tian and C. M. Lieber, "Design , synthesis , and characterization of novel nanowire structures for photovoltaics and intracellular probes *," vol. 83, no. 12, pp. 2153-2169, 2011. https://doi.org/10.1351/PAC-CON-11-08-25
  31. J. Shi and X. Wang, "Functional semiconductor nanowires via vapor deposition," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 29, no. 6, p. 060801, 2011. https://doi.org/10.1116/1.3641913
  32. G. M. Bakhshkandi Roya, "Growth of TiO2 Nanorods by HFCVD," Life Science Journal, vol. 10, no. 1, pp. 424-430, 2013.
  33. S. K. Pradhan, P. J. Reucroft, F. Yang, and A. Dozier, "Growth of TiO2 nanorods by metalorganic chemical vapor deposition," Journal of Crystal Growth, vol. 256, no. 1-2, pp. 83-88, Aug. 2003. https://doi.org/10.1016/S0022-0248(03)01339-3
  34. C. Tsai and H. Teng, "Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO 2 with Different Post-Treatments," no. 4, pp. 367-373, 2006. https://doi.org/10.1021/cm0518527
  35. M. Rodríguez-Reyes and H. J. Dorantes-Rosales, "A simple route to obtain TiO2 nanowires by the sol-gel method," Journal of Sol-Gel Science and Technology, vol. 59, no. 3, pp. 658-661, Jul. 2011. https://doi.org/10.1007/s10971-011-2541-5
  36. L. Miao, S. Tanemura, S. Toh, and K. Kakeko, "Preparation of TiO 2 Nanorods by Heating Sol Gel Template Method."
  37. G. She, L. Mu, and W. Shi, "Electrodeposition of one-dimensional nanostructures.," Recent patents on nanotechnology, vol. 3, no. 3, pp. 182-91, Jan. 2009. https://doi.org/10.2174/187221009789177777
  38. Z. G. Shang, Z. Q. Liu, P. J. Shang, and J. K. Shang, "Synthesis of Single-Crystal TiO 2 Nanowire Using Titanium Monoxide Powder by Thermal Evaporation," vol. 28, no. 5, pp. 385-390, 2012.
  39. W. Lu, P. Xie, and C. M. Lieber, "Nanowire Transistor Performance Limits and Applications," vol. 55, no. 11, pp. 2859-2876, 2008. https://doi.org/10.1109/TED.2008.2005158
  40. Y. V Kolen'ko, K. a Kovnir, A. I. Gavrilov, A. V Garshev, J. Frantti, O. I. Lebedev, B. R. Churagulov, G. Van Tendeloo, and M. Yoshimura, "Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide.," The journal of physical chemistry. B, vol. 110, no. 9, pp. 4030-8, Mar. 2006. https://doi.org/10.1021/jp055687u
  41. Z.-Y. Yuan and B.-L. Su, "Titanium oxide nanotubes, nanofibers and nanowires," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 241, no. 1-3, pp. 173-183, Jul. 2004. https://doi.org/10.1016/j.colsurfa.2004.04.030
  42. M. T. Borgstr, J. Wallentin, M. Heurlin, F. Stefan, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, "Nanowires With Promise for Photovoltaics," vol. 17, no. 4, pp. 1050-1061, 2011. https://doi.org/10.1109/JSTQE.2010.2073681
  43. J. Qu and C. Lai, "One-Dimensional TiO 2 Nanostructures as Photoanodes for Dye-Sensitized Solar Cells," vol. 2013, 2013.
  44. S. Cells, "Hierarchical Oriented Anatase TiO 2 Nanostructure arrays on Flexible Substrate for Efficient Dye-sensitized," pp. 1-7, 2013.
  45. J. B. Baxter and E. S. Aydil, "Nanowire-based dyesensitized solar cells," pp. 1-3, 2005.
  46. J. Lee, M. Rahman, S. Sarker, N. C. D. Nath, A. J. S. Ahammad, and J. K. Lee, "Metal Oxides and Their Composites for the Photoelectrode of Dye Sensitized Solar Cells," 2010.
  47. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, "Nanowire dye-sensitized solar cells.," Nature materials, vol. 4, no. 6, pp. 455-9, Jun. 2005. https://doi.org/10.1038/nmat1387
  48. B. Soon, H. Kang, S. Choi, M. Kang, J. Kim, and H. Kim, "Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency **," pp. 54-58, 2008. https://doi.org/10.1002/adma.200701819
  49. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, "Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays.," Nano letters, vol. 7, no. 1, pp. 69-74, Jan. 2007. https://doi.org/10.1021/nl062000o
  50. J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, and A. B. Walker, "Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons.," Journal of the American Chemical Society, vol. 130, no. 40, pp. 13364-72, Oct. 2008. https://doi.org/10.1021/ja804852z
  51. N. Bao, X. Feng, and C. a. Grimes, "Self- Organized One-Dimensional TiO2 Nanotube/ Nanowire Array Films for Use in Excitonic Solar Cells: A Review," Journal of Nanotechnology, vol. 2012, pp. 1-27, 2012.