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Abstract—This paper presents an adaptive sampling 

method for electrocardiogram (ECG) signal detection. 

First, by employing the strings matching process with 

compression dictionary, we recognize each segment of 

ECG with different characteristics. Then, based on 

the non-uniform sampling strategy, the sampling rate 

is determined adaptively. As the results of simulation 

indicated, our approach reconstructed the ECG signal 

at an optimized sampling rate with the guarantee of 

ECG integrity. Compared with the existing adaptive 

sampling technique, our approach acquires an ECG 

signal at a 30% lower sampling rate. Finally, the 

experiment exhibits its superiority in terms of energy 

efficiency and memory capacity performance.   

 

Index Terms—Adaptive sampling, ECG, redundant 

processing, dictionary-based compression, FPGA    

I. INTRODUCTION 

Nowadays, society is facing a challenge of the aged 

high-health-risk populations, health care problems 

become a hot issue. Meanwhile, current medical 

innovation model is shifted from the traditional hospital-

centered one toward family, community, and workplace-

centered one. Fig. 1 exhibits a typical architecture of a 

modern bio-sensor network system. Along with 

technique developments in semiconductors and wireless 

sensor networks (WSNs), bio-sensor systems have 

become more portable, low-power, intelligent and micro-

sized such as Mobihealth [4] and Intel [5]. 

In the wireless nodes, the most power consumption is 

from data transmission. For example, the power 

consumption of one bit of data transmitted is 

approximately equal to running 1000 CPU codes on a 

sensor node [9, 10]. A large amount of samples certainly 

aggravates the energy burden of data transmission. Thus, 

adaptive sampling and data compression technologies 

have been widely accepted as efficient methods to satisfy 

low-power requirements in WSNs applications. In this 

paper, we focus on the adaptive sampling of ECG signal 

through smart selection of sampling rates, and thus we 

significantly reduce the sampling cost. 

Due to the inclusion of a smaller number of samples, 

the sampling speed is expected to be low. Nonetheless, 

the Nyquist-rate limitation cannot be avoided on account 

of the occurrence of aliasing [6] such that ambiguity 

occurs in the measurement. Consequently, the speed of 

frequency measurement should be adopted carefully. In 

the comparison of various relevant algorithms and 

techniques [1-3, 7], the traditional sampling rate 

adjustment is based on the analog signal analysis or 

statistical characteristics frameworks, which require a 

complex processing. Unfortunately, any algorithm 

 

Fig. 1. Typical architecture of the modern bio-sensor systems. 
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implemented in WSN suffers from nodes resource (such 

as power consumption and size) limitations. Thus, an 

efficient sampling algorithm should be designed for 

WSN with low computation complexity and high 

resource utilization. In this paper, we utilize the existing 

data compression processing as the adaptive sampling 

control logic, so as to avoid including an additional 

algorithm for adaptive scheme.  

The organization of this paper is as follows. Section II 

introduces the related works and our motivation. Section 

III explains our adaptive sampling scheme, and shows 

our proposed algorithm framework with hardware 

platform implementation. Section IV discusses the 

simulation results. Finally, Section V concludes the paper. 

II. BACKGROUND AND RELATED WORK 

1. Adaptive ECG Acquisition 

 

In the time-domain sampling theorem, Nyquist-

Shannon defines the minimum sampling rate: fsampling 

guaranteeing the reconstruction of the sampled signal [6], 

and fsampling ≥ fk. where fk is the maximum frequency in 

the power spectrum of the signal. For example, Fig. 2 

exhibits a typical ECG transient signal. If we realize the 

rate selection of sampling based on the Nyquist-Shannon 

theory, this signal can be divided into two parts in the 

time domain: the low sampling rate segment flow and high 

sampling rate segment fhigh (in the QRS complex 

segment). For sampling the classical transient ECG 

signal in Fig. 2, the desired scheme is given in Table 1 

[1-3]. The sampling scheme usually adopts 12bit 

sampling precision (fhigh > 500samples/s and flow > 

64samples/s). Note that we need to use non-uniform 

sampling taking the Nyquist-Shannon theorem into 

consideration. In other words, the sampling rate of the 

QRS complex (fhigh) is higher than the others (flow). 

Because of the requirement of integrity signal 

reconstruction, a large number of samples are applied in 

the QRS complex segment. Whereas, the smaller number 

of samples are demanded by the other segments. Except 

for the QRS segment, many stationary samples 

containing dominant redundant data are not necessary for 

reconstruction [7]. Furthermore, we can easily find that 

the sample rate can be related to the redundancy of 

samples (Fig. 4).  

2. Adaptive Sampling Model 

 

In various data acquisition designs, an efficient 

sampling and compression processing is essential. It can 

significantly reduce the size of redundant samples, with 

the benefit of extra energy savings in DSP and 

transmission. For example, in our ECG signal detection 

cases in Fig. 3, there are three types of sampling schemes. 

Scheme A is based on a uniform sampling framework 

that adopts a fixed sampling rate. Compared with the 

other two adaptive sampling methods B and C, more 

samples are accumulated in A, which required extra 

hardware memory resources and energy.  

In Fig. 3, B illustrates a classical adaptive sampling 

scheme in ECG signal detection, which is realized on a 

thresholding principle [2, 15]. When the raw analog 

signal is compared to a threshold voltage value, if the 

signal level is above the threshold, a fast sampling rate 

fhigh will be adopted. Otherwise, a slow rate flow will be 

fed back with low-cost samples. However, the 

thresholding principle scheme certainly increases the 

complexity and adds an additional analog circuit [16]. 

For the size-restricted ECG senor nodes, any unnecessary 

resource cost may make system unavailable. Different 

 

Fig. 2. Adaptive sampling principle of the ECG signal. 

 

Table 1. Non-uniform sampling schemes in [1-3] 

Non-uniform 

sampling 

Reference 

[1] 

Reference 

[2] 

Reference 

[3] 
Our scheme 

fhigh 1000Hz 512Hz 1000Hz 800Hz 

flow 100Hz 64Hz 200Hz 25-100Hz 

Precision  12bit 12bit 12bit 12bit 
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from the traditional adaptive sampling scheme, our 

proposed method of adaptive sampling (Fig. 3 C) 

depends on dictionary’s redundant analysis with an 

existing compression processing. Finally, based on the 

feedback of the rate control logic, the required samples 

can be acquired with an adaptive synchronous rate. Let 

us compare the scheme B and C as shown in Fig. 3. In 

order to complete an adaptive sampling, the scheme B 

needs an additional analog circuit. Such as, H. J. Kim et 

al. [2] designed the architecture consisted of a 

differentiator, a comparator, and a multiplexer. Instead, 

the proposed scheme C setups an adaptive logic without 

any extra hardware, which re-utilizes an existing 

compression algorithm as a core of sampling strategy. 

As shown in Fig. 3, our sampling scheme C is similar 

to the scheme B in terms of sampling rate setting. Both of 

them adopt the non-uniform sampling (using a multi-rate 

of sampling). For instance, if a large number of repetitive 

samples occur (such as samples between T and P 

segment), a lower sampling rate flow is employed. In 

contrast, in the QRS complex, if the samples redundancy 

significantly decreases, then the current low sampling 

rate cannot satisfy the requirement of QRS reconstruction. 

Thus a higher rate fhigh is prerequisite. In scheme C, 

another main difference with the scheme B is that we set 

a more flexible rate based on the matching length of 

strings. According to these matching results of each 

string in the dictionary, the sampling rate can be 

classified into fhigh, flow, and fdeep.  

In order to illustrate our motivation, Fig. 4 describes 

the relationship between the adaptive sampling and the 

responded compressing coding clock. Fig. 4(a) shows 

adaptive sampling mode for ECG measurement. Fig. 4(b) 

exhibits a LZW-based coding clock for ECG0328.dat. In 

the LZW processing, coding clock reflects the state of 

matching operation in dictionary. D. Salomon [14] also 

points that matching operation presents the redundant 

state of samples. Based on these operations, the transient 

impulse is accompanied by the low redundancy. For 

example, if we compress an ECG in Fig. 4, the QRS 

complex segment can be distinguished from the other 

stable state segments, since the coding clock gives a 

high-frequent responding for QRS. Eventually, according 

to this coding clock in Fig. 4(b), we can relate the data 

compressing with the adaptive sampling. By doing so, 

our sampling estimates sampling rate on different 

segments (such as QRS, P and T segment).  

Table 2 exhibits a comparison result of match 

processing between the initial part of the ECG and the 

QRS complex in a group of ECG samples (ECG0328.dat 

in Fig. 8). Also the table shows the maximum length of 

string in processing and code number. Table 2 shows a 

 

Fig. 3. (a) Uniform sampling, (b) Traditional adaptive sampling 

[2], (c) Proposed architecture of an adaptive sampling. 

 

 

 

--

--

--

S
am
p
li
n
g
 m
o
de

--

0

1

Time

C
o
d
in
g
 s
y
n
ch
ro
n
o
u
s 
cl
o
ck

 

Fig. 4. The principle illumination of proposed scheme (a) 

Adaptive sampling strategy for ECG0328.dat signal, (b) LZW 

compression coding clock to ECG0328.dat. *Note: For the fhigh 

sampling period (the QRS complex segment), the compression 

coding clock also give a high frequency response.  

 

Table 2. Dictionary operation in the different ECG segments 

Dictionary 

operation 
Matched  Mismatched  

String 

max-

length 

Codes 

number 

Before QRS 144 8 12byte 48 

QRS 3 40 2byte 43 
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matching result of ECG signal (ECG0328.dat). In the 

QRS complex segment, the signal samples have low 

redundancy. Thus, in the dictionary operations, there are 

3 matched operations and 40 mismatched operations. In 

contrast, in the segment between two QRSs, there are 144 

matched operations and 8 mismatched operations 

included in compression processing. Because of the 

inherent repetitive samples and high redundancy, a large 

number of stable data exists in this segment, and thus 

samples are frequently matched in the processing of 

look-up dictionary. Moreover, the length of string is 

grown, and thus, as shown in Table 2, the string max-

length is 12byte. Here, the string length is another key 

factor for sampling, since the string length reflects the 

degree of accumulation of redundant data in dictionary. 

III. ALGORITHM AND IMPLEMENTATION  

1. Overall Algorithm  

 

Fig. 5 exhibits our sampling scheme procedure. The 

counter i is a matching ratio of samples with the entry in 

the redundant dictionary. The counter j is a mismatching 

ratio of samples in the entry of redundant dictionary. The 

string > k represents the trigger value of lowest sampling. 

Other sampling parameters include fhigh = 800 samples/s, 

flow = 100 samples/s, and fdeep = 25 samples/s.  

1) Mode 1 (fsampling=flow): this mode’s control logic is 

based on the matching result in the redundant dictionary. 

If samples have a high matching ratio (counter i>n), a 

low sampling rate logic fsampling=flow will be fed back. For 

example, for the initial samples of an ECG signal in Fig. 

2 before the QRS complex sensing, a large number of 

repetitive samples are accumulated. The sampling 

matching ratio is high. Hence, a low sampling rate 

(fsampling=flow) is adopted. 

2) Mode 2 (fsampling=fhigh): the triggering of this mode 

control depends on the mismatching ratio (j>m). For 

example, as shown in Table 2, most samples do not 

match in the redundant dictionary, when the QRS 

complex is sensed. Hence, a high sampling rate fsampling = 

fhigh should be permitted. In addition, in order to avoid 

the QRS complex segment accumulated in the dictionary, 

after testing every QRS sampling, the redundant 

dictionary must be cleaned, by erasing all saved strings.  

3) Mode 3 (fsampling=fdeep): After an fsampling=flow mode is 

adopted, the algorithm should check the length of 

matching samples. If the length of matching samples is 

out of a trigger value (length of string>k) for a single 

string, a lower sampling rate fsampling=fdeep mode should be 

adopted. For example, with the given amount of 

repetitive samples, the matched sample length is 

significant grown. Such samples represent in Table 2 a 

higher redundancy occurrence. Hence, a deep sparse 

sampling mode (fsampling=fdeep) should be adopted. Next, 

we describe our approach as follows: 

 

 

 

Fig. 5. The flow chart of our ECG signals sampling strategy. 
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2. FPGA Implementation 

 

Many dictionary-based compression algorithms have 

been developed specifically for data acquisition or sensor 

networks [10-12]. Lempel-Ziv-Welch (LZW) [14] 

compression is the most popular in the field of lossless 

data compression due to its simplicity. The LZW 

compression replaces strings of samples with a set of 

single codes, and improves data redundancy quality to 

reduce data space, not significantly increasing the 

computation complexity. Thus LZW is a commonly 

effective method for dealing with highly redundant data 

processing.  

Fig. 6 illustrates the LZW compressor architecture on 

FPGA platform. Since FPGA resources are constrained, 

the dictionary’s available size in this platform is limited 

to 256×(9+9+8) bits. The dictionary storage memory is 

constrained so as to satisfy the ECG signal detection 

application. Because under a sampling rate fsampling= 

800samples/s, the stable samples segment of the ECG 

(before the QRS complex) includes the code count less 

than 200 in compression, while the dictionary update 

cycle is 255 for a 256×(9+9+8)bits-sized dictionary. 

Note that the dictionary cannot be filled up before the 

QRS complex has arrived. This guarantees that the 

matching operation can work steadily, since the 

dictionary would not be reset, and these samples can be 

saved in the same dictionary. All of the flow segment 

samples can be contained in the same single dictionary 

until the fhigh trigger has arrived. 

As shown in Fig. 6, the compressor is decomposed 

into three stages. The first stage generates a dictionary 

index value. At the beginning, the index1 value and other 

related parameters are generated based on the hash 

function. After that, the algorithm moves on to the 

dictionary matching part. According to the result of the 

dictionary matching comp1_comp2 in the current index, 

the conflict judgment output selection logic to 

multiplexer array1. For instance, when the index conflict 

does not occur, index1 would be available in multiplexer 

array1. Otherwise, the first stage would output index2 or 

index3. 

The second stage performs dictionary-based string 

matching in parallel. As illustrated in Fig. 6 comparator 

array1 matches the first byte against data of appendcode 

(index), and comparator array2 matches the second byte 

or codevalue (index) against data of percode (index). The 

matching results comp1_comp2 and empty_flag are used 

to determine whether to push these two data (string) into 

the dual-port RAM dictionary. If codevalue (index) is 0 

in the dictionary, then the empty_flag is set to 1, 

implying the dictionary is empty. Otherwise, according 

to comp1_comp2, the processor can easily distinguish the 

current compression state between the match pattern and 

the conflict pattern. Then the compressor decides to 

generate a new string with the next byte, or go back to 

the index assignment and count a new index value. 

During dictionary matching, the percode(index) input 

value is synchronously decided by these two patterns in 

multiplexer array2. Whether the latch is enabled depends 

on the output_flag value. When output_flag is 1, the 

compressor output percode from the encoder register (as 

shown in Fig. 6). 

The last stage of the FPGA implementation is the 

feedback logic control. In our proposed hardware 

architecture, according to matching results in the match 

Counter i, mismatch Counter j and string length k, the 

sampling rate control block can generate a dynamic 

frequency based on the different sampling mode (mode1, 

mode2 and mode3). And then samples are outputted from 

 

Fig. 6. Compressor architecture on a FPGA platform. 
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dual-RAM in real-time. Here, dual-RAM owns two main 

function one is temporarily stored to samples. Input 

samples should be temporarily stored in the delay-RAM 

a priori, and wait until the correct sampling rate is 

assigned from multiplexer array3. This task is common 

in feedback-sampling-rate designs, which normally 

ensure signal integrity in trigger and variable-sampling 

periods, such as the delay buffer application presented in 

[2]. Other is a delay function that guarantees the QRS 

complex integrity when the fhigh sampling is triggered. 

We trigger a high sampling rate for the QRS complex 

after the trigger value. However, we also need to set the 

same high sampling rate for the boundary samples in the 

front part of the QRS complex which are below the 

trigger value. Therefore, we need the dual-RAM to 

temporarily restore these samples in the front part of the 

QRS complex until a higher sampling rate control logic 

(fhigh) come. 

The implementation was done using VHDL on the 

Quartus II compiler and simulator. Fig. 7 shows the RTL 

viewer map on Quartus II, the simulation and the 

hardware platforms. Our program synthesized platform is 

implemented on an Altera chip EP1K. For the 

complexity of the compression block in the FPGA 

resources, the total memory block utilization is up to 

78% of the FPGA storage cells, since a FIFO and double-

port RAM dictionary is integrated into the processor, and 

logic elements occupy 21% of the logic cells. 

 

 

IV. EXPERIMENTAL RESULTS  

Fig. 8 shows comparison results of a uniform sampling 

with our implemented variable sampling rate scheme for 

an ECG transient signal samples (ECG0328.data and 

ECG0329.data). According to Fig. 8, we find ECG signal 

can be integrally reconstructed without any loss based on 

these three sampling schemes. However, their sampling 

efficiency are different. More detailed information is 

illustrated in Table 3. Next, we briefly describe the 

experimental results. 
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Fig. 8. Comparison of the ECG represented in (a) uniform 

sampling rate, in, (b) adaptive sampling rate level on fhigh=800 

Hz and flow= 100 Hz, in (c) adaptive sampling rate level on 

fhigh= 800 Hz, flow=100 Hz and fdeep=25 Hz. 

 

 

 

Fig. 7. The RTL viewer technology map of compressor on 

Quartus II and hardware simulation platforms. 
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Fig. 8(a) is set to the uniform sampling whose fixed 

sampling rate is 800 samples/s. Based on our algorithm, 

Fig. 8(b) adopts the non-uniform sampling scheme, and 

the sampling rate setting as follows: fhigh =800 samples/s 

and flow = 100 samples/s without fdeep. The scheme in Fig. 

8(b) is used as a related reference for traditional adaptive 

sampling. Performance of the scheme is close to the 

traditional adaptive sampling application in the ECG 

signal detection [1-3]. Result of our scheme is shown in 

Fig. 8(c). The deep adaptive sampling rate is divided into 

fhigh = 800 samples/s, flow=100 samples/s and fdeep = 25 

samples/s. Therefore, we obtain a lower number of 

samples. Table 3 illustrates the numner of samples in the 

different segments of the ECG signal, according to the 

result shown in Fig. 8. 

As shown in Table 3, the scheme c) significantly 

decreased the number of samples in the most segment 

samples, except for the QRS complex. The sampling is 

done without any integrity loss in ECG signal detection. 

Compared with the uniform sampling scheme in scheme 

a), our proposed strategy reduced a large amount of the 

samples (more than 80%) in the ECG sensor nodes 

before performing compression and transmission. For 

example, if we measure ECG0328 during 1 hour with 

uniform sampling (without adaptive sampling), system 

required 5.8 Mbyte hard-merory before the transmission. 

However, based on our scheme, 1.1 Mbyte hard-merory 

was required. The memory access space was reduced by 

5 times. According to P. Smith [13], Bluetooth’s Power 

per bit is 0.153 uW/bit, and Wifi’s Power per bit is 

0.00525 uW/bit. Table 4 exhibits the wireless transmit 

power consumption comparison among these sampling 

schemes for ECG0328 (Fig. 8) sampling in 10,000ms. 

Fig. 9 shows the effectiveness of the proposed 

adaptive sampling scheme on ECG detection platform. 

We compared our scheme with an existing adaptive 

architecture [2] that includes an additional analog circuits 

(a differentiator, a comparator, and a multiplexer), and 

two rate levels fL and fH (respectively 64 Hz and 512 Hz). 

As shown in Fig. 9, we use the same sampling rate levels 

as [2]. Finally, as Fig. 9 exhibits, this reduction in 

sampling rate reduces the hard-memory resource and the 

energy consumption of the transmission. 

V. CONCLUSIONS 

In this paper, we propsoed an adaptive sampling 

strategy for ECG measurement, implementing on an 

FPGA platform. Our algorithm re-utilized the existing 

data compression logic (real-time strings matching logic) 

to improve the sampling efficiency. As simulation results 

indicated, our approach reconstructed the ECG signal at a 

lower sampling rate with guaranteeing ECG integrity. 

Our sampling algorithm significantly decreased the 

sampling rate by 80% compared with a unifrom sampling 

strategy. Additionally, the hardware memory space and 

the wireless transmission power were reduced, so that 

efficiency approximately improved 5 times than the 

uniform sampling. As a future research, we need to 

generalize our measurement model to apply to extensive 

applications. 

Table 3. Comparison results of the different sampling schemes. 

ECG0328/ 

samples 

Uniform 

sampling i) 

Adaptive 

sampling ii) 

Adaptive 

sampling iii) 

QRS complex 42 42 42 

P1 30 6 7 

P2 31 6 5 

T 82 13 11 

Others 415 72 43 

Total 600 139 108 

 

 

 

Fig. 9. Performance of the hardware memory and transmission 

power consumption comparison between [2] suggested 

technique and our proposed adaptive sampling. 

 

 

Table 4. The sending power consumption comparison results of 

the different sampling schemes for ECG0328 in 10 seconds. 

Sampling  

Scheme & power 
consumption 

Uniform 

sampling a) 
/mW 

Adaptive 

sampling b) 
/mW 

Adaptive 

sampling c) 
/mW 

Bluetooth 19.584 4.572 3.452 

WIFI 0.672 0.156 0.117 
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