DOI QR코드

DOI QR Code

Genetic diversity of Millettia japonica in Korea as revealed by ISSR analysis

ISSR 분석으로 살펴본 애기등의 유전적 다양성

  • Received : 2013.11.07
  • Accepted : 2013.11.29
  • Published : 2013.12.30

Abstract

This study employed inter-simple-sequence repeat (ISSR) to assess genetic variation among 189 individuals representing 10 populations (nine in Korea and one in Japan) of Millettia japonica, which has recently been lifted from the endangered species of Korea. The calculated Shannon's information index value (I = 0.2689) of the species was appreciable and was higher than other endangered leguminous woody taxa. Gochang (I = 0.2968), Namhae (I = 0.2951), and Mt. Toham (I = 0.2823) populations showed relatively high genetic diversity, whereas the Kyushu (in Japan) population (I = 0.2487) exhibited the lowest. The results of an analysis of molecular variance indicated that 86.49% of the diversity was attributed to within populations, and 13.51% to differences among populations, suggesting that M. japonica populations do not have significant geographic differentiation and that the gene flow between populations exists to some extent (Nm = 1.8446). Continuous habitat monitoring should be conducted to conserve genetic diversity of M. japonica, particularly for those populations with relatively high genetic diversity. Selection of many individuals from the populations in Gochang, Namhae, and Mt. Toham is thought to be an appropriate strategy for ex situ conservation of M. japonica in Korea.

최근 환경부 멸종위기종 급에서 해제된 애기등(Millettia japonica) 집단의 유전적 다양성 분석을 위해 10개 집단(한국 9집단, 일본 1집단) 189개체에 대한 ISSR (Inter-Simple-Sequence-Repeat) 분석을 수행하였다. 조사된 애기등의 유전적 다양성은 같은 과내의 멸종위기종보다 더 높은 것으로 조사되었다(Shannon's information index: I = 0.2689). 집단별 유전적 다양성은 전북 고창(I = 0.2968) 집단과 경남 남해(I = 0.2951), 경북 토함산(I = 0.2823) 집단이 높았으며, 일본 큐슈(I = 0.2487) 집단이 가장 낮았다. 애기등 10개 집단이 공유하는 유전변이의 양은 전체 유전변이의 86.49%로 나타났고, 전체의 13.51%가 집단간 유전적 차이에 의한 것으로 나타났다. 또한 조사된 애기등 집단간 교류를 나타내는 Nm 값(1.8446)이 비교적 높은 것으로 나타났으며, 이에 따라 집단간 유전적 분화가 크게 일어나지 않았음을 알 수 있었다. 본 연구 결과 애기등의 유전자원 보존을 위해서는 유전다양도가 높은 집단을 중심으로 지속적인 자생지 모니터링이 요구되며, 현지외 보존을 위해서는 더 높은 유전적 다양도를 지닌 전북 고창, 경남 남해, 경북 토함산 집단에서 다수 개체를 선발하는 보존 전략이 적절할 것으로 판단된다.

Keywords

References

  1. Avise, J. C. and J. L. Hamrick. 1996. Conservation genetics, case histories from nature. Chapman & Hall, New York.
  2. Bohonak, A. J. 2002. IBD (Isolation By Distance): A program for analyses of isolation by distance. Journal of Heredity 93: 153-154. https://doi.org/10.1093/jhered/93.2.153
  3. Bostein, D., R. L. White, M. Skolnick and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics 32: 314-331.
  4. Chung, J. M., B. C. Lee, J. S. Kim, C.-W. Park, M. Y. Chung and M. G. Chung. 2006. Fine-scale genetic structure among genetic individuals of the clone-forming monotypic genus Echinosophora koreensis (Fabaceae). Annals of Botany 98: 165-173. https://doi.org/10.1093/aob/mcl083
  5. Dice, L. R. 1945. Measures of the amount of ecological association between species. Ecology 26: 297-302. https://doi.org/10.2307/1932409
  6. Ellstrand, N. C. and D. R. Elam. 1993. Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics 24: 217-242. https://doi.org/10.1146/annurev.es.24.110193.001245
  7. Excoffier, L., P. Smouse and J. Quattro. 1992. Analysis of molecular variance inferred from metric distance among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479-491.
  8. Fang D. Q. and M. L. Roose. 1997. Identification of closely related citrus cultivars with inter-simple sequence markers. Theoretical and Applied Genetics 95: 408-417. https://doi.org/10.1007/s001220050577
  9. Falk, D. A. and K. E. Holsinger. 1991. Genetics and conservation of rare plants. Oxford University Press, New York.
  10. Ge, X.-J., Y. Yu, Y.-M. Yuan, H.-W. Huang and C. Yan. 2005. Genetic diversity and geographic differentiation in endangered Ammopiptanthus (Leguminosae) populations in desert regions of northwest China as revealed by ISSR analysis. Annals of Botany 95: 843-851. https://doi.org/10.1093/aob/mci089
  11. Godt, M. J. W., J. Walker and J. L. Hamrick. 1997. Genetic diversity in the endangered lily Harperocallis flava and a close relative, Tofieldia racemosa. Conservation Biology 11: 361-366. https://doi.org/10.1046/j.1523-1739.1997.95439.x
  12. Ha, G. S. 2010. A study on the characteristic and Forest Structure of rare and endangered Millettia japonica. Ms. Thesis. Jinju Industrial University of Korea. (in Korean)
  13. Hamrick, J. L. and M. J. W. Godt. 1996. Conservation genetics of endemic plant species. In Conservation Genetics, Case Histories from Nature. Avise, J. C. and J. L. Hamrick (eds.), Chapman and Hall, New York. Pp. 281-304.
  14. Hartle, D. L. and A. G. Clark. 1997. Principles of population genetics. Sinauer Associations, Inc. Sunderland.
  15. Hong, Y. P., M. J. Kim and K. N. Hong. 2003. Genetic diversity in natural populations of two geographic isolates of Korean black raspberry. Journal of Horticultural Science and Biotechnology 78: 350-354. (in Korean) https://doi.org/10.1080/14620316.2003.11511630
  16. Hu, J.-M, M. Lavin, M. Wojciechowski and M. J. Sanderson. 2002. Phylogenetic analysis of nuclear ribosomal ITS/5.8S sequences in the tribe Millettieae (Fabaceae): Poecilanthe-Cyclolobium, the core Millettieae, and the Callerya group. Systematic Botany 27: 722-733.
  17. Hu, J.-M. and S.-P. Chang. 2003. Two new members of the Callerya group (Fabaceae) based on phylogenetic analysis of rbcL sequences: Endosamara racemosa (Roxb.) Geesink and Callerya vasta (Kosterm.) Schot. 2003. Taiwania 48(2): 118-128.
  18. Jeong, J. H., H. S. Kim, C. H. Lee and Z. S. Kim. 2007. Genetic diversity and spatial structure in population of Abelia tyaihyoni. Journal of Korean Forest Society 96(6): 667-675. (in Korean)
  19. Kajita, T., H. Ohashi, Y. Tateishi, C. D. Bailey and J. J. Doyle. 2001. rbcL and legume phylogeny with particular reference to Phaseoleae, Millettieae, and allies. Systematic Botany 26: 515-536.
  20. Lavin, M. 1987. A cladistic analysis of the tribe Robinieae (Papilionoideae, Leguminosae). In Advances in Legume Systematics part 3. Stirtion, C. H. (ed), Royal Botanic Gardens, Kew. Pp. 31-64.
  21. Lee, S. W., Y. M. Kim, W. W. Kim and J. M. Chung. 2002. Genetic variation of ISSR markers in the natural populations of a rare and endangered tree species. Oplopanax elatus in Korea. Journal of Korean Forest Society 91: 565-573. (in Korean)
  22. Liu, J, S. Shi, E. Chang, W. Yang and Z. Jiang. 2013. Genetic diversity of the critically endangered Thuja sutchuenensis revealed by ISSR markers and the implications for conservation. International Journal of Molecular Science 14(7): 14860-14871. https://doi.org/10.3390/ijms140714860
  23. McDermott, J. M. and B. A. McDonald. 1993. Gene flow in plant pathosystems. Annual Review of Phytopathology 31: 353-373. https://doi.org/10.1146/annurev.py.31.090193.002033
  24. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of USA 70: 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  25. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.
  26. Reddy, M. P., N. Sarla and E. A. Siddiq, 2002. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128: 9-17 https://doi.org/10.1023/A:1020691618797
  27. Rohlf, F. J. 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Ver. 2.21. Exter Ltd., Setauket, New York.
  28. Semagn, K., A. Bjørnstad and M. N. Ndjiondijop. 2006. An Overview of molecular marker methods for plants. African Journal of Biotechnology 5(25): 2540-2568.
  29. Shannon, C. E. and W. Weaver. 1949. The mathematical theory of communication. University of Illinois Press, Urbana.
  30. Wojciechowski, M. F., M. J. Sanderson and J.-M. Hu. 1999. Evidence on the monophyly of Astragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNA trnL intron data. Systematic Botany 24: 409-437. https://doi.org/10.2307/2419698
  31. Wolfe, A. D. and A. Liston. 1998. Contributions of PCR-based methods plant systematics and evolutionary biology. In Plant Molecular Systematics II. Soltis, D. E., P. S. Soltis and J.J. Doyle (eds). Kluwer, Boston. Pp. 43-86.
  32. Xiao, L.-Q., X.-J. Ge, X. Gong, G. Haoand and S.-X. Zheng. 2004. ISSR variation in thee endemic and endanger plant Cycas guizhouensis (Cycadaceae). Annals of Botany 94: 133-138. https://doi.org/10.1093/aob/mch119
  33. Yeh, F. C., R. C. Yang and T. Boyle. 1999. POPGENE. Microsoft Windows based freeware for population genetic analysis. Release 1.31. University of Alberta, Edmonton.

Cited by

  1. WISTERIA JAPONICA: KAEMPFER'S JAMA FUJI vol.32, pp.3-4, 2015, https://doi.org/10.1111/curt.12116
  2. The Callerya Group redefined and Tribe Wisterieae (Fabaceae) emended based on morphology and data from nuclear and chloroplast DNA sequences vol.125, pp.None, 2019, https://doi.org/10.3897/phytokeys.125.34877
  3. 경주국립공원 특별보호구역의 식생 특성 분석 - 애기송이풀, 애기등, 복주머니란 개체군을 대상으로 - vol.23, pp.3, 2013, https://doi.org/10.13087/kosert.2020.23.3.45