DOI QR코드

DOI QR Code

First-principles Study on the Half-metallicity and Magnetism for the Heusler Based Compounds of N(2-0.5n)O0.5nKCa (n=0~4)

호이슬러 구조 기반의 N(2-0.5n)O0.5nKCa (n = 0~4) 화합물의 반쪽금속성 및 자성에 대한 제일원리 연구

  • Received : 2013.11.19
  • Accepted : 2013.12.11
  • Published : 2013.12.31

Abstract

The half-metallicity and magnetism for compounds of the $N_{(2-0.5n)}O_{0.5}nKCa$ (n = 0~4), which was based on the $d^0$ Heusler half-metals of $N_2KCa$ and $O_2KCa$, were investigated by means of first-principles band calculation method. From the calculated total magnetic moments and the density of states, we found that these three compounds have the half-metallicity. The magnetic moments of the N and O atoms in these compounds were considerably increased compared to those of pure $N_2KCa$ and $O_2KCa$. The K atoms have a large negative magnetic moments. The relationship between the value of magnetic moments for each atom and density of states are discussed.

최근에 발견된 $d^0$ 반쪽금속성을 가지는 호이슬러 화합물 $N_2KCa$$O_2KCa$이 합금을 이루었을 때 그 반쪽금속성과 자성을 제일원리 방법을 이용하여 연구하였다. 계산을 통해 얻은 상태밀도와 총 자기모멘트를 통해 고려의 대상인 $N_{1.5}O_{0.5}KCa$, NOKCa, $N_{0.5}O_{1.5}KCa$ 등 세 가지 화합물 모두 반쪽금속성 나타냄을 알 수 있었다. 이들 화합물에서 N 원자와 O 원자의 자기모멘트는 순수물질에 비해 상당히 증가하였으며, K 원자의 자기모멘트는 상당히 큰 음의 값을 가졌다. 각 원자들의 자기모멘트와 계산된 원자별 상태밀도를 연관시켜 자성과 반쪽금속성을 논의하였다.

Keywords

References

  1. R. A. de Groot, F. M. Muller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024
  2. I. Galanakis and P. H. Dederichs, Phys. Rev. B 66, 174429 (2002). https://doi.org/10.1103/PhysRevB.66.174429
  3. S. P. Lewis, P. B. Allen, and T. Sasaka, Phys. Rev. B 55, 10253 (1997). https://doi.org/10.1103/PhysRevB.55.10253
  4. Y. S. Dedkov, U. Rudiger, and G. Guntherrodt, Phys. Rev. B 65, 064417 (2002). https://doi.org/10.1103/PhysRevB.65.064417
  5. H. Akinaga, T. Manago, and M. Shirai, Jap. J. Appl. Phys. 39, L1118 (2000). https://doi.org/10.1143/JJAP.39.L1118
  6. W. H. Xie, Y. Q. Xu, B. G. Liu, and D. G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003). https://doi.org/10.1103/PhysRevLett.91.037204
  7. J. E. Pask, L. H. Yang, C. Y. Fong, W. E. Pickett, and S. Dag, Phys. Rev. B 67, 224420 (2003). https://doi.org/10.1103/PhysRevB.67.224420
  8. K. Kusakabe, M. Geshi, H. Tsukamoto, and N. Suzuki, J. Phys.: Condens. Matter 16, 55639 (2004).
  9. O. Volnianska, P. Jakubas, and P. Boguslawski, J. Alloys Compd. 423, 191 (2006). https://doi.org/10.1016/j.jallcom.2006.01.092
  10. M. Sieberer, J. Redinger, S. Khmelevskyi, and P. Mohn, Phys. Rev. B 73, 024404 (2006). https://doi.org/10.1103/PhysRevB.73.024404
  11. G. Y. Gao, K. L. Yao, E. Sasioglu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, Phys. Rev. B 75, 174442 (2005).
  12. O. Volnianska and P. Boguslawski, Phys. Rev. B 75, 224418 (2007). https://doi.org/10.1103/PhysRevB.75.224418
  13. E. Yan, Physica B 407, 879 (2012). https://doi.org/10.1016/j.physb.2011.12.106
  14. J. Chen, G. Y. Gao, K. L. Lao, and M. H. Song, J. Alloys Compd. 509, 10172 (2011). https://doi.org/10.1016/j.jallcom.2011.08.083
  15. H. Rozale, A. Lakdja, A. Amar, A. Chahed, and O. Benhelal, Comp. Mater. Sci. 69, 229 (2013). https://doi.org/10.1016/j.commatsci.2012.12.002
  16. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).
  17. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) https://doi.org/10.1103/PhysRev.136.B864
  18. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  20. D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977). https://doi.org/10.1088/0022-3719/10/16/019
  21. I. Galanakis, P. H. Mavropoulos, and D. H. Dederichs, J. Phys. D: Appl. Phys. 39, 765 (2006). https://doi.org/10.1088/0022-3727/39/5/S01